Author(s):
Rashmi G. Khope, Shruti C. Gotmare, Nilakshi N. Dhoble, Nitin N. Padole, Pankaj Dhapke, Jagdish R. Baheti
Email(s):
rashmikhope1999@gmail.com
DOI:
10.52711/2231-5691.2024.00008
Address:
Rashmi G. Khope*, Shruti C. Gotmare, Nilakshi N. Dhoble, Nitin N. Padole, Pankaj Dhapke, Jagdish R. Baheti
Department of Pharmaceutics, Kamla Nehru College of Pharmacy, Butibori, Nagpur, Maharashtra.
*Corresponding Author
Published In:
Volume - 14,
Issue - 1,
Year - 2024
ABSTRACT:
New nanotechnology tactics to enhance drug delivery to the central nervous system have drawn increasing attention from academics and drug designers in recent years (CNS). The treatment of neurological conditions, including Alzheimer's disease, Parkinson's disease, brain tumours, and stroke, has a significant deal of potential to be impacted by nanotechnology. Numerous investigations on the topic of neurodegeneration revealed that CNS illnesses have been successfully treated with nanomaterials. Nanocarriers have made it possible to transport chemotherapeutics to specific locations, which has effectively slowed the growth of malignant brain tumours. The treatment of CNS diseases, which improves the overall effect of medication and emphasises the significance of nano-therapeutics, is thus the most effective application of nanomaterials. In order to transport therapeutic agents to the CNS, this study was done to analyse the data on the use of nanotechnology in the design of drug delivery systems that can pass through the blood-brain barrier (BBB).
Cite this article:
Rashmi G. Khope, Shruti C. Gotmare, Nilakshi N. Dhoble, Nitin N. Padole, Pankaj Dhapke, Jagdish R. Baheti. Intranasal Drug Delivery: A Non-Invasive Method for improving Neurotherapeutic Delivery. Asian Journal of Pharmaceutical Research. 2024; 14(1):53-1. doi: 10.52711/2231-5691.2024.00008
Cite(Electronic):
Rashmi G. Khope, Shruti C. Gotmare, Nilakshi N. Dhoble, Nitin N. Padole, Pankaj Dhapke, Jagdish R. Baheti. Intranasal Drug Delivery: A Non-Invasive Method for improving Neurotherapeutic Delivery. Asian Journal of Pharmaceutical Research. 2024; 14(1):53-1. doi: 10.52711/2231-5691.2024.00008 Available on: https://www.asianjpr.com/AbstractView.aspx?PID=2024-14-1-8
REFERENCES:
1. Powles JW, Zatonski W, Vander Hoorn S, Ezzati M. The contribution of leading diseases and risk factors to excess losses of healthy life in Eastern Europe: burden of disease study. BMC Public Health. 2005; 5(1): 1-10.https://doi.org/10.1186/1471-2458-5-116
2. Kumar R, Jha P, Arora P, Mony P, Bhatia P, Millson P, Dhingra N, Bhattacharya M, Remis RS, Nagelkerke N, International studies of HIV/AIDS (ISHA) investigators. Trends in HIV-1 in young adults in south India from 2000 to 2004: a prevalence study. The Lancet. 2006; 367(9517):1164-72..https://doi.org/10.1016/S0140-6736(06)68435-3
3. World Health Organization. Neurological disorders: public health challenges. World Health Organization; 2006.
4. World Health Organization. Neuroscience of psychoactive substance use and dependence. World Health Organization; 2004.
5. Gourie-Devi M. Neuroepidemiological study in semiurban and rural areas in South India: Pattern of neurological disorders including motor neuron disease. Motor neuron disease: Global Clinical Patterns and International Research. 1987: 11-21. https://doi.org/10.1016/S0140-6736(00)04516-5
6. Kapoor SK, Banerjee AK. Prevalence of common neurological diseases in a rural community of India. Indian Journal of Community Medicine. 1989; 14(4): 171-6.doi: 10.4103/jfmpc.jfmpc_1048_19
7. Razdan S, Kaul RL, Motta A, Kaul S, Bhatt RK. Prevalence and pattern of major neurological disorders in rural Kashmir (India) in 1986. Neuroepidemiology. 1994; 13(3): 113-9. https://doi.org/10.1159/000110368
8. Gourie-Devi M, Gururaj G, Satishchandra P, Subbakrishna DK. Prevalence of neurological disorders in Bangalore, India: a community-based study with a comparison between urban and rural areas. Neuroepidemiology. 2004; 23(6): 261-8. https://doi.org/10.1159/000080090
9. Das SK, Sanyal K. Neuroepidemiology of major neurological disorders in rural Bengal. Neurology India. 1996; 44(2): 47-58. https://doi.org/10.2188/jea.JE20081034
10. Saha SP, Bhattacharya S, Das SK, Maity B, Roy T, Raut DK. Epidemiological study of neurological disorders in a rural population of Eastern India. Journal of the Indian Medical Association. 2003; 101(5): 299-300. https://doi.org/10.2188/jea.JE20081034
11. De Rivero Vaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. Journal of Cerebral Blood Flow and Metabolism. 2014; 34(3):369-75.doi:10.1038/jcbfm.2013.227;
12. Thwaites G, Fisher M, Hemingway C, Scott G, Solomon T, Innes J. British Infection Society guidelines for the diagnosis and treatment of tuberculosis of the central nervous system in adults and children. Journal of Infection. 2009; 59(3):167-87.https://doi.org/10.1016/j.jinf.2009.06.011
13. Galanopoulou AS, Buckmaster PS, Staley KJ, Moshé SL, Perucca E, Engel Jr J, Löscher W, Noebels JL, Pitkänen A, Stables J, White HS. Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia. 2012; 53(3): 571-82. https://doi.org/10.1111/j.1528-1167.2011.03391.
14. Haddad PM, Dursun SM. Neurological complications of psychiatric drugs: clinical features and management. Human Psychopharmacology: Clinical and Experimental. 2008; 23(S1): S15-26. https://doi.org/10.1002/hup.918
15. Dey S, Mazumder B. Nasal drug delivery: An approach of drug delivery through nasal route. Der Pharmacia Sinica. 2011. https://doi.org/10.1002/hup.918
16. Islam SU, Shehzad A, Ahmed MB, Lee YS. Intranasal delivery of nanoformulations: a potential way of treatment for neurological disorders. Molecules. 2020; 25(8): 1929. https://doi.org/10.3390/molecules25081929
17. Kim J, De Jesus O. Medication Routes of Administration. InStatPearls [Internet] 2022 . Stat Pearls Publishing.
18. Tyagi S, Sharma N, Sharma PK. A review on application of natural bioadhesive polysaccharides for intranasal drug delivery. Int JA PS. BMS. 2012 Apr; 1:80-94.
19. Chien Y. Nasal Systematic Drug Delivery. Marcel Dekker; 1989.
20. Appasaheb PS, Manohar SD, Bhanudas SR, Anjaneri N. A review on intranasal drug delivery system. Journal of Advanced Pharmacy Education & Research. 2013; 3(4).
21. Kushwaha SK, Keshari RK, Rai AK. Advances in nasal trans-mucosal drug delivery. Journal of Applied Pharmaceutical Science. 2011: 21-8.
22. Zaheer A, Swamy S. Mucoadhesive polymers: Drug carriers for improved nasal drug delivery. Indian Journal of Novel Drug Delivery. 2012; 4(1): 2-16. https://doi.org/10.3109/03639040903170750
23. Vyas SP, Khar RK. Targeted & controlled drug delivery: novel carrier systems. CBS Publishers & Distributors; 2004. https://doi.org/10.4155/tde.14.63
24. Rathanan M, Kumar DS, Shirwaikar A, Kumar R, Kumar DS, Prasad RS. Preparation of mucoadhesive microspheres for nasal delivery by spray drying. Indian Journal of Pharmaceutical Sciences. 2007; 69(5): 651.10.4103/0250-474X.38470
25. Upadhyay S, Parikh A, Joshi P, Upadhyay UM, Chotai NP. Intranasal drug delivery system-A glimpse to become maestro. Journal of Applied Pharmaceutical Science. 2011; 30:34-44. 10.4103/0250-474X.38470
26. Wüthrich P, Buri P. The transnasal route of drug administration. Aspects of nasal anatomy and physiology. Pharmaceutica Acta Helvetiae. 1989; 64(12): 322-31.
27. Marple B, Roland P, Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngology-Head and Neck Surgery. 2004; 130(1): 131-41. https://doi.org/10.1016/j.otohns.2003.07.005
28. Fokkens WJ. Unmet needs in rhinology. Rhinology. 2008; 46(4): 257-8.
29. Frank D, Pawar S, Rhee JS, Kimbell JS. Effects of Anatomy and Particle Size on Nasal Sprays. Otolaryngology—Head and Neck Surgery. 2011; 145(2_suppl): P119-.125 https://doi.org/10.1177/0194599811427519
30. Guo Y, Laube B, Dalby R. The effect of formulation variables and breathing patterns on the site of nasal deposition in an anatomically correct model. Pharmaceutical Research. 2005; 22(11): 1871-8. https://doi.org/10.1007/s11095-005-7391-9
31. Malekar NS, Gondkar SB, Bhairav BA, Paralkar PS, Saudagar RB. Development of naratriptan hydrochloride in-situ nasal gel. Evaluation. 2017; 100(100): 100.http://dx.doi.org/10.5958/0974-360X.2017.00178.0
32. Agarwal P, Kumar A, Tanwar YS, Sharma S. Formulation and evaluation of in-situ nasal gel of rizatriptan benzoate by using mucoadhesive polymers. Journal of Drug Delivery and Therapeutics. 2017; 7(2): 132-40. https://doi.org/10.22270/jddt.v7i2.1333
33. Illum L. Nasal delivery. The use of animal models to predict performance in man. Journal of drug targeting. 1996; 3(6): 427-42. https://doi.org/10.3109/10611869609015963
34. Molinari G, Colombo G, Celenza C. Respiratory allergies: a general ovehttps://doi.org/10.1155/2014/326980rview of remedies, delivery systems, and the need to progress. International Scholarly Research Notices. 2014; 2014.
35. Chirag P, Tyagi S, Mangukia D, Ishita S, Shreya P, Kumar U. Recent Review On Alternative System of Parenteral Delivery: Nasal Drug Delivery System. Journal of Drug Discovery and Therapeutics. 2013; 1(1): 12-8.
36. Dale O, Nilsen T, Loftsson T, Tønnesen HH, Klepstad P, Kaasa S, Holand T, Djupesland PG. Intranasal midazolam: a comparison of two delivery devices in human volunteers. Journal of Pharmacy and Pharmacology. 2006; 58(10): 1311-8. https://doi.org/10.1211/jpp.58.10.0003
37. Ozer AY. The importance of intranasal route for application of drugs and nasal drug delivery systems. Pharmacia-JTPA. 1990; 30: 136-47. https://doi.org/10.1023/B:PHAR.0000026823.82950.ff
38. Rajendran R, Balan R, Ganesan N, Thiruvengadam D. Recent modalities in drug delivery via inhalation therapy–An advanced treatment strategy for pulmonary Carcinoma. Int J Pharm Pharm Sci. 2015; 7: 8-21. https://dx.doi.org/10.22159/ijap.2021v13i3.40602
39. Kamble MS, Bhalerao KK, Bhosale AV, Chaudhari PD. A review on nose-to-brain drug delivery. International Journal of Pharmaceutical and Chemical Sciences. 2013; 2(1): 516-25. 10.13040/IJPSR.0975-8232.13(2).569-78
40. Paun JS, Bagada AA, Raval MK. Nasal drug delivery as an effective tool for brain targeting: a review. Int. J. Pharm. App. Sci. 2010: 45-55.
41. Kaur P, Garg T, Rath G, Goyal AK. In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane. Artificial cells, nanomedicine, and biotechnology. 2016; 44(4): 1167-76. https://doi.org/10.3109/21691401.2015.1012260
42. Parvathi M. Intranasal drug delivery to brain: an overview. Int J Res Pharm Chem. 2012; 2(3): 889-95 https://doi.org/10.3109/21691401.2015.1012260.
43. Prasad YR, Krishnaiah YR, Satyanarayana S. Intranasal drug delivery systems; an overview. Indian Journal of Pharmaceutical Sciences. 1996; 58(1): 1. https://www.ijpsonline.com/articles/intranasal-drug-delivery-systems
44. O'Hagan DT, Illum L. Absorption of peptides and proteins from the respiratory tract and the potential for development of locally administered vaccine. Critical reviews in therapeutic drug carrier systems. 1990; 7(1): 35-97. https://europepmc.org/article/med/2257636
45. Ugwoke MI, Agu RU, Verbeke N, Kinget R. Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Advanced drug delivery reviews. 2005 Nov 3; 57(11):1640-65.https://doi.org/10.1016/j.addr.2005.07.009
46. Mestecky J, Moldoveanu Z, Michalek SM, Morrow CD, Compans RW, Schafer DP, Russell MW. Current options for vaccine delivery systems by mucosal routes. Journal of controlled release. 1997; 48(2-3): 243-57. https://doi.org/10.1016/S0168-3659(97)00036-9
47. Shinichiro H, Takatsuka Y, Hiroyuki M. Effect of surfactants on the nasal absorption of insulin in rats. International Journal of Pharmaceutics. 1981; 9(2):165-72.https://doi.org/10.1016/0378-5173(81)90009-0
48. Marx D, Williams G, Birkhoff M. Intranasal drug administration—an attractive delivery route for some drugs. Drug Discov Dev. 2015: 299-320. http://dx.doi.org/10.5772/59468
49. Lee VH. Enzymatic barriers to peptide and protein absorption and the use of penetration enhancers to modify absorption. InDelivery systems for peptide drugs 1986 (pp. 87-104). Springer, Boston, MA.DOI: 10.1007/978-1-4757-9960-6_7
50. Hahens WI., Oomen AG., deJong WH., Cassee FR. What do we (need to) know about the kinetic properties of nanoparticles in the body? Regulatory Toxicology and Pharmacology. 2007; 49: 217-229. https://doi.org/10.1016/j.yrtph.2007.07.006
51. Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. European Journal of Pharmaceutics and Biopharmaceutics. 1995; 41(1): 2-13. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3408031
52. Hanson M, Gazdick G, Cahill J, Augustine M. Intranasal delivery of the peptide, salmon calcitonin. Delivery Systems for Peptide Drugs 1986 (pp. 233-242). Springer, Boston, MA.DOI: 10.1007/978-1-4757-9960-6_19
53. Yousaf SA, Salamat A. Effect of heating environment on fluorine doped tin oxide (f: SnO/sub 2/) thin films for solar cell applications. InProceedings of the International Conference on Power Generation Systems Technologies. 2011.
54. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology. 2018; 9(1): 1050-74. https://doi.org/10.3762%2Fbjnano.9.98
55. Tamboli MA, Gaikwad MV. A review on: synthesis of nanoparticles using extracts of lantana camera to controlled mosquuito larvae. Journal homepage: www. ijrpr. com ISSN.; 2582:7421.
56. Bentolila LA, Ebenstein Y, Weiss S. Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine. 2009; 50(4): 493-6. https://doi.org/10.22270/jddt.v12i3-S.5373
57. Nahar M, Dutta T, Murugesan S, Asthana A, Mishra D, Rajkumar V, Tare M, Saraf S, Jain NK. Functional polymeric nanoparticles: an efficient and promising tool for active delivery of bioactives. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2006; 23(4). DOI: 10.1615/CritRevTherDrugCarrierSyst.v23.i4.10
58. Villalva MD, Agarwal V, UlanovaM, Sachdev PS, Braidy N. Quantum dots as a theranostic approach in Alzheimer's disease: a systematic review. Nanomedicine. 2021; 16(18): 1595-611. https://doi.org/10.2217/nnm-2021-0104
59. Dong J, Tao L, Abourehab MA, Hussain Z. Design and development of novel hyaluronate-modified nanoparticles for combo-delivery of curcumin and alendronate: fabrication, characterization, and cellular and molecular evidences of enhanced bone regeneration. International Journal of Biological Macromolecules. 2018; 116: 1268-81. https://doi.org/10.1016/j.ijbiomac.2018.05.116
60. Sintov AC, Velasco-Aguirre C, Gallardo-Toledo E, Araya E, Kogan MJ. Metal nanoparticles as targeted carriers circumventing the blood–brain barrier. International Review of Neurobiology. 2016; 130:199-227.https://doi.org/10.1016/bs.irn.2016.06.007
61. Zhang W, Sigdel G, Mintz KJ, Seven ES, Zhou Y, Wang C, Leblanc RM. Carbon dots: A future Blood–Brain Barrier penetrating nanomedicine and drug nanocarrier. International Journal of Nanomedicine. 2021; 16: 5003. https://doi.org/10.2147%2FIJN.S318732
62. Fischer, M.; Vögtle, F. Dendrimers: From design to application—A progress report. Angew. Chem. Int. Ed. 1999; 38: 884–905 https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7%3C884::AID-ANIE884%3E3.0.CO; 2-K
63. Xiang C, Zhang Y, Guo W, Liang XJ. Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication. Acta Pharmaceutica Sinica B. 2020; 10(2): 239-48. https://doi.org/10.1016/j.apsb.2019.11.003
64. Komane PP, Choonara YE, du Toit LC, Kumar P, Kondiah PP, Modi G, Pillay V. Diagnosis and treatment of neurological and ischemic disorders employing carbon nanotube technology. Journal of Nanomaterials. 2016; 2016. https://doi.org/10.1155/2016/9417874
65. Hussain Z, Pandey M, Thu HE, Kaur T, Jia GW, Ying PC, Xian TM, Abourehab MA. Hyaluronic acid functionalization improves dermal targeting of polymeric nanoparticles for management of burn wounds: In vitro, ex vivo and in vivo evaluations. Biomedicine & Pharmacotherapy. 2022; 150: 112992. https://doi.org/10.1016/j.biopha.2022.112992
66. Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Current Drug Delivery. 2006; 3(2):219-32. https://doi.org/10.2174/156720106776359230
67. Wang LS, Chuang MC, Ho JA. Nanotheranostics–a review of recent publications. International Journal of Nanomedicine. 2012; 7: 4679. http://dx.doi.org/10.2147/IJN.S33065
68. Kempa TJ, Day RW, Kim SK, Park HG, Lieber CM. Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells. Energy & Environmental Science. 2013; 6(3): 719-33.https://doi.org/10.1039/C3EE24182C
69. Shim MS, Kwon YJ. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Advanced Drug Delivery Reviews. 2012; 64(11): 1046-59. https://doi.org/10.1016/j.addr.2012.01.018
70. Jakki SL, Ramesh YV, Gowthamarajan K, Senthil V, Jain K, Sood S, Pathak D. Novel anionic polymer as a carrier for CNS delivery of anti-Alzheimer drug. Drug Delivery. 2016; 23(9): 3471-9. https://doi.org/10.1080/10717544.2016.1196767
71. Alagusundaram M, Chengaiah B, Gnanaprakash K, Ramkanth S, Chetty CM, Dhachinamoorthi D. Nasal drug delivery system-an overview. Int J Res Pharm Sci. 2010; 1(4): 454-65. http://www.ijrps.pharmascope.org/
72. Moseley BD, Chanteux H, Nicolas JM, Laloyaux C, Gidal B, Stockis A. A review of the drug− drug interactions of the antiepileptic drug brivaracetam. Epilepsy Research. 2020; 163: 106327. https://doi.org/10.1016/j.eplepsyres.2020.106327
73. Andrade C. Intranasal drug delivery in neuropsychiatry: focus on intranasal ketamine for refractory depression. The Journal of Clinical Psychiatry. 2015; 76(5): 9351. https://doi.org/10.4088/JCP.15f10026).
74. Alberto M, Paiva-Santos AC, Veiga F, Pires PC. Lipid and Polymeric Nanoparticles: Successful Strategies for Nose-to-Brain Drug Delivery in the Treatment of Depression and Anxiety Disorders. Pharmaceutics. 2022; 14(12): 2742. https://doi.org/10.3390/pharmaceutics14122742
75. Martin V, Hoekman J, Aurora SK, Shrewsbury SB. Nasal delivery of acute medications for migraine: The upper versus lower nasal space. Journal of Clinical Medicine. 2021; 10(11): 2468. https://doi.org/10.3390/jcm10112468
76. Assadpour S, Shiran MR, Asadi P, Akhtari J, Sahebkar A. Harnessing Intranasal Delivery Systems of Sumatriptan for the Treatment of Migraine. BioMed Research International. 2022; 2022. https://doi.org/10.1155/2022/3692065
77. Kulkarni AD, Vanjari YH, Sancheti KH, Belgamwar VS, Surana SJ, Pardeshi CV. Nanotechnology-mediated nose to brain drug delivery for Parkinson's disease: a mini review. Journal of drug targeting. 2015; 23(9): 775-88. https://doi.org/10.3109/1061186X.2015.1020809
78. Cunha S, Forbes B, Lobo JM, Silva AC. Improving drug delivery for Alzheimer’s disease through nose-to-brain delivery using nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ hydrogels. International Journal of Nanomedicine. 2021; 16: 4373. https://doi.org/10.2147%2FIJN.S305851
79. Parashar AK, Kurmi B, Patel P. Preparation and characterization of ligand anchored polymeric nanoparticles for the treatment of epilepsy. Pharmaspire. 2021; 13(1):1-5.
80. Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson's disease. International Journal of Pharmaceutics. 2011; 415(1-2): 273-83. https://doi.org/10.1016/j.ijpharm.2011.05.062
81. Patil MO, Mali YS, Patil PA, Karnavat DR. Development of Immunotherapeutic Nanoparticles for treatment of Tuberculosis. Asian Journal of Pharmaceutical Research. 2020; 10(3): 226-32. doi: 10.5958/2231-5691.2020.00039.8
82. Kumari GD, Raksha G, Deepak K, Anjana G, Mary CS. A Review on Chitosan Nanoparticle as a Drug delivery system. Asian Journal of Pharmaceutical Research. 2020; 10(4): 299-306. doi: 10.5958/2231-5691.2020.00051.9
83. Mali AD, Bathe RS. An updated review on liposome drug delivery system. Asian Journal of Pharmaceutical Research. 2015; 5(3): 151-7. doi: 10.5958/2231-5691.2015.00023.4
84. Singh I. A Review on in-Vivo Imaging of Cancer Cells by Bioconjugated Quantum Dots. Asian Journal of Pharmaceutical Research. 2018; 8(4): 243-8.doi: 10.5958/2231-5691.2018.00042.4
85. Hemalatha B, Kalpana M, Rekha BS, Varalakshmi A, Padmalatha K. An Overview on Nasal Drug Delivery System. Asian Journal of Pharmaceutical Research. 2022; 12(3): 249-58. http://dx.doi.org/10.52711/2231-5691.2022.00041
86. Saudagar RB, Khandbahale SV. In-Situ Nasal Gel-A Review. Asian Journal of Research in Pharmaceutical Science. 2017; 7(1): 23-32. http://dx.doi.org/10.5958/2231-5659.2017.00005.4
87. Nikam PM, Gondkar SB, Saudagar RB. Brain Targeting Drug Delivery System: A Review. Asian Journal of Research in Pharmaceutical Science. 2015; 5(4): 247-52. http://dx.doi.org/10.5958/2231-5659.2015.00036.3
88. Patole K, Danane A, Nikam A, Patil A. Review on Nanotechnology and its utilization in Pharmaceuticals. Asian Journal of Research in Pharmaceutical Sciences. 2021; 11(4): 319-22. https://doi.org/10.52711/2231-5659.2021.00050
89. Thalkari AB, Karwa PN, Priyanka S. Nanotechnology: The Future. Asian Journal of Pharmacy and Technology. 2019; 9(1): 40-8. http://dx.doi.org/10.5958/2231-5713.2019.00008.4
90. Mali AH, Shaikh AZ. A short review on nasal drug delivery system. Asian Journal of Pharmacy and Technology. 2021; 11(4): 289-92. http://dx.doi.org/10.52711/2231-5713.2021.00048
91. Nikam A, Patil A, Magdum C. Nanotechnology: Overview and its application. Asian Journal of Pharmacy and Technology. 2021; 11(4): 293-5. http://dx.doi.org/10.52711/2231-5713.2021.00049
92. Shinde AJ, More HN. Nanoparticles: As carriers for drug delivery system. Research Journal of Pharmaceutical Dosage Forms and Technology. 2009; 1(2): 80-6.