Author(s): Pragati A. Bachhav, Rajavi M. Shroff, Atul A. Shirkhedkar

Email(s): pragatibachhav01@gmail.com , rajavishroff1996@gmail.com , shirkhedkar@gmail.com

DOI: 10.5958/2231-5691.2020.00035.0   

Address: Pragati A. Bachhav1, Rajavi M. Shroff1, Atul A. Shirkhedkar2*
1Department of Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist: Dhule (MS.) India 425405.
2Central Instruments Facility (CIF), Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, MS, India 425405.
*Corresponding Author

Published In:   Volume - 10,      Issue - 3,     Year - 2020


ABSTRACT:
Silver nanoparticles (AgNPs) are used in medicine as antimicrobial agents. AgNPs are the subjects of research because of their inimitable properties like size and shape depending on optical, catalytical, antimicrobial, and electrical properties. Even though the perfect mode of action of AgNPs is not exactly known but an antimicrobial mode of action by free radical, dephosphorylation and by inhibiting the replication of DNA by attaching to their soft acids and bases is considered. A variety of physical methods, chemical methods, and biological techniques are applied for the synthesis of AgNPs. In these, the biological method is mostly useful and has a wide scope in the future due to its easy availability. Silver particles even synthesized of different shapes like cubic, pyramidal, nanorods, nanowires, etc. AgNPshave diverse applications in the medical field; it is also recognized as a cytotoxic agent and anti-cancer agent. This review article prefers to highlight on the mode of action, synthesis of AgNPs with different methods and types of AgNP’s with different shapes and applications of them.


Cite this article:
Pragati A. Bachhav, Rajavi M. Shroff, Atul A. Shirkhedkar. Silver Nanoparticles: A Comprehensive Review on Mechanism, Synthesis and Biomedical Applications. Asian J. Pharm. Res. 2020; 10(3):202-212. doi: 10.5958/2231-5691.2020.00035.0

Cite(Electronic):
Pragati A. Bachhav, Rajavi M. Shroff, Atul A. Shirkhedkar. Silver Nanoparticles: A Comprehensive Review on Mechanism, Synthesis and Biomedical Applications. Asian J. Pharm. Res. 2020; 10(3):202-212. doi: 10.5958/2231-5691.2020.00035.0   Available on: https://www.asianjpr.com/AbstractView.aspx?PID=2020-10-3-11


REFERENCES:
1. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences. 2014 Nov;9(6):385.
2. El-Nour KM, Eftaiha AA, Al-Warthan A, Ammar RA. Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry. 2010 Jul 1;3(3):135-40.
3. Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry. 2019 Dec 1;12(8):1823-38.
4. Siddiqi KS, Husen A, Rao RA. A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology. 2018 Dec;16(1):14.
5. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel Biological approach. Process Biochemistry. 2007 May 1;42(5):919-23.
6. S. Senapati, Biosynthesis and immobilization of nanoparticles and their applications. India: University of Pune; 2005. Ph D. Thesis, 1-57.
7. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology. 2001 Jan 1;19(1):15-20.
8. Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachtaindica) leaf broth. Journal of Colloid and Interface Science. 2004 Jul 15;275(2):496-502.
9. Catauro M, Raucci MG, De Gaetano F, Marotta A. Antibacterial and bioactive silver-containing Na 2 O• CaO• 2SiO 2 glass prepared by sol–gel method. Journal of Materials Science: Materials in Medicine. 2004 Jul 1;15(7):831-7.
10. Crabtree JH, Burchette RJ, Siddiqi RA, Huen IT, Hadnott LL, Fishman A. The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Peritoneal Dialysis International. 2003 Jan 1;23(4):368-74.
11. Shin WK, Cho J, Kannan AG, Lee YS, Kim DW. Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO 2 nanoparticles for lithium-ion polymer batteries. Scientific Reports. 2016 May 18; 6:26332.
12. Klasen HJ. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns. 2000;26(2):117-30.
13. Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Letters in Applied Microbiology. 1997 Sep;25(4):279-83.
14. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters. 2012 Dec 1;2(1):32.
15. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science. 2004 Jul 1;275(1):177-82.
16. Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J. Conduction electron spin resonance of small silver particles. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy. 2006 Jan 1;63(1):189-91.
17. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2007 Mar 1;3(1):95-101.
18. Zielińska A, Skwarek E, Zaleska A, Gazda M, Hupka J. Preparation of silver nanoparticles with controlled particle size. Procedia Chemistry. 2009 Nov 1;1(2):1560-6.
19. Hatchett DW, White HS. Electrochemistry of sulfuradlayers on the low-index faces of silver. The Journal of Physical Chemistry. 1996 Jun 6;100(23):9854-9.
20. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007 May 4;18(22):225103.
21. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research. 2000 Dec 15;52(4):662-8.
22. Shenashen MA, El‐Safty SA, Elshehy EA. Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Particle and Particle Systems Characterization. 2014 Mar;31(3):293-316.
23. Kruis FE, Fissan H, Rellinghaus B. Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Materials Science and Engineering: B. 2000 Jan 14; 69:329-34.
24. Magnusson MH, Deppert K, Malm JO, Bovin JO, Samuelson L. Gold nanoparticles: production, reshaping, and thermal charging. Journal of Nanoparticle Research. 1999 Jun 1;1(2):243-51.
25. Magnusson MH, Deppert K, Malm JO, Bovin JO, Samuelson L. Gold nanoparticles: production, reshaping, and thermal charging. Journal of Nanoparticle Research. 1999 Jun 1;1(2):243-51.
26. Kabashin AV, Meunier M. Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. Journal of Applied Physics. 2003 Dec 15;94(12):7941-3.
27. Dolgaev SI, Simakin AV, Voronov VV, Shafeev GA, Bozon FV, Nanoparticles produced by laser ablation of solids in a liquid environment, Applied Surf Sci. 2002; 186;546-551.
28. Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JH. Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. Journal of the American Chemical Society. 2004 Jun 16;126(23):7176-7.
29. Kawasaki M, Nishimura N. 1064-nm laser fragmentation of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles. Applied Surface Science. 2006 Dec 15;253(4):2208-16.
30. Natsuki J, Natsuki T, Hashimoto Y. A review of silver nanoparticles: synthesis methods, properties and applications. Int. J. Mater. Sci. Appl. 2015 Sep 29;4(5):325-32.
31. Tsuji T, Iryo K, Watanabe N, Tsuji M. Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Applied Surface Science. 2002 Dec 15;202(1-2):80-5.
32. Tien DC, Tseng KH, Liao CY, Huang JC, Tsung TT. Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. Journal of Alloys and Compounds. 2008 Sep 8;463(1-2):408-11.
33. Siegel J, Kvítek O, Ulbrich P, Kolská Z, Slepička P, Švorčík V. Progressive approach for metal nanoparticle synthesis. Materials Letters. 2012 Dec 15; 89:47-50.
34. Chen SF, Zhang H. Aggregation kinetics of nanosilver in different water conditions. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2012 Jun 12;3(3):035006.
35. Dang TM, Le TT, Fribourg-Blanc E, Dang MC. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2012 Jun 12;3(3):035004.
36. Wiley B, Sun Y, Mayers B, Xia Y. Shape‐controlled synthesis of metal nanostructures: the case of silver. Chemistry–A European Journal. 2005 Jan 7;11(2):454-63.
37. Evanoff DD, Chumanov G. Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. The Journal of Physical Chemistry B. 2004 Sep 16;108(37):13957-62.
38. Merga G, Wilson R, Lynn G, Milosalejevic B, Meisel D, Redox Catalysis on naked Silver nanoparticles, Journal of Phys Chem 2007; 111:122206.
39. Oliveira MM, Ugarte D, Zanchet D, Zarbin AJ. Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of Colloid and Interface Science. 2005 Dec 15;292(2):429-35.
40. Oliveira MM, Ugarte D, Zanchet D, Zarbin AJ. Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of Colloid and Interface Science. 2005 Dec 15;292(2):429-35.
41. Kim D, Jeong S, Moon J. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology. 2006 Jul 14;17(16):4019.
42. Zhang Y, Peng H, Huang W, Zhou Y, Yan D. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. Journal of Colloid and Interface Science. 2008 Sep 15;325(2):371-6.
43. Krutyakov YA, Olenin AY, Kudrinskii AA, Dzhurik PS, Lisichkin GV. Aggregative stability and polydispersity of silver nanoparticles prepared using two-phase aqueous organic systems. Nanotechnologies in Russia. 2008 Jun 1;3(5-6):303-10.
44. Zhang W, Qiao X, Chen J. Synthesis of nanosilver colloidal particles in water/oil microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007 May 15;299(1-3):22-8.
45. Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A, Laub D. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society. 2004 Mar 31;126(12):3868-79.
46. Huang H, Yang Y. Preparation of silver nanoparticles in inorganic clay suspensions. Composites Science and Technology. 2008 Nov 1;68(14):2948-53.
47. Zhou Y, Yu SH, Wang CY, Li XG, Zhu YR, Chen ZY. A novel ultraviolet irradiation photoreduction technique for the preparation of single‐crystal Ag nanorods and Ag dendrites. Advanced Materials. 1999 Jul;11(10):850-2.
48. Socol Y, Abramson O, Gedanken A, Meshorer Y, Berenstein L, Zaban A. Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir. 2002 Jun 11;18(12):4736-40.
49. Jin R, Cao YC, Hao E, Métraux GS, Schatz GC, Mirkin CA. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature. 2003 Oct;425(6957):487-90.
50. Malval JP, Jin M, Balan L, Schneider R, Versace DL, Chaumeil H, Defoin A, Soppera O. Photoinduced size-controlled generation of silver nanoparticles coated with carboxylate-derivatized thioxanthones. The Journal of Physical Chemistry C. 2010 Jun 17;114(23):10396-402.
51. Sato‐Berrú R, Redón R, Vázquez‐Olmos A, Saniger JM. Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface‐enhanced Raman spectroscopy. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering. 2009 Apr;40(4):376-80.
52. Nadagouda MN, Speth TF, Varma RS. Microwave-assisted green synthesis of silver nanostructures. Accounts of Chemical Research. 2011 Jul 19;44(7):469-78.
53. Polshettiwar V, Nadagouda MN, Varma RS. Microwave-assisted chemistry: a rapid and sustainable route to synthesis of organics and nanomaterials. Australian Journal of Chemistry. 2009 Feb 10;62(1):16-26.
54. Chen J, Wang J, Zhang X, Jin Y. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Materials Chemistry and Physics. 2008 Apr 15;108(2-3):421-4.
55. Yin H, Yamamoto T, Wada Y, Yanagida S. Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Materials Chemistry and Physics. 2004 Jan 15;83(1):66-70.
56. Tsuji M, Matsumoto K, Jiang P, Matsuo R, Hikino S, Tang XL, Kamarudin KS. The role of adsorption species in the formation of Ag nanostructures by a microwave-polyol route. Bulletin of the Chemical Society of Japan. 2008 Mar 15;81(3):393-400.
57. Soroushian B, Lampre I, Belloni J, Mostafavi M. Radiolysis of silver ion solutions in ethylene glycol: solvated electron and radical scavenging yields. Radiation Physics and Chemistry. 2005 Feb 1;72(2-3):111-8.
58. Athawale AA, Desai PA. Silver doped lanthanum chromites by microwave combustion method. Ceramics International. 2011 Dec 1;37(8):3037-43.
59. Hsieh CT, Pan C, Chen WY. Synthesis of silver nanoparticles on carbon papers for electrochemical catalysts. Journal of Power Sources. 2011 Aug 1;196(15):6055-61.
60. Ipekoglu M, Altintas S. Silver substituted nanosized calcium deficient hydroxyapatite. Materials Technology. 2010 Nov 1;25(5):295-301.
61. Kate KH, Singh K, Khanna PK. Microwave formation of Polypyrrole/Ag nano-composite based on interfacial polymerization by use of AgNO3. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2011 Feb 24;41(2):199-202.
62. Kate KH, Damkale SR, Khanna PK, Jain GH. Nano-silver mediated polymerization of pyrrole: synthesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite. Journal of Nanoscience and Nanotechnology. 2011 Sep 1;11(9):7863-9.
63. Ma SN, Ou ZW, Sun XF, Bai M, Liu ZH. In-situ synthesis of ultra-dispersion-stability nano-Ag in epoxy resin and toughening modification to resin. J Funct Mater. 2009; 40:1029-32.
64. Si MZ, Fang Y, Dong G. Research on nano-silver colloids prepared by microwave synthesis method and its SERS activity. Acta Photon Sin. 2008; 37:1034-6.
65. Tai CY, Wang YH, Liu HS. A green process for preparing silver nanoparticles using spinning disk reactor. AIChE Journal. 2008 Feb;54(2):445-52.
66. Guozhong C. Nanostructures and nanomaterials: synthesis, properties and applications. World Scientific; 2004 Apr 8.
67. Haruta M. Nanoparticulate Gold Catalysts for Low‐Temperature CO Oxidation. Chem Inform. 2004 Nov 30;35(48):no-.
68. Xu R, Wang D, Zhang J, Li Y. Shape‐dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry–An Asian Journal. 2006 Dec 18;1(6):888-93.
69. Xu R, Wang D, Zhang J, Li Y. Shape‐dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry–An Asian Journal. 2006 Dec 18;1(6):888-93.
70. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG. Photoinduced conversion of silver nanospheres to nanoprisms. Science. 2001 Nov 30;294(5548):1901-3.
71. Dong X, Ji X, Wu H, Zhao L, Li J, Yang W. Shape control of silver nanoparticles by stepwise citrate reduction. The Journal of Physical Chemistry C. 2009 Apr 23;113(16):6573-6.
72. Zielinska A, Skwarek E, Zaleska A, Gazda M, Hupka J. Preparation of silver nanoparticles with controlled particle size. Procedia Chem 1: 1560–1566.
73. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. The Journal of Physical Chemistry B. 2005 Mar 3;109(8):3157-62.
74. Senapati S. Biosynthesis and immobilization of nanopaticles and their applications, 2005.
75. Bhattacharya D, Gupta RK. Nanotechnology and potential of microorganisms. Critical Reviews in Biotechnology. 2005 Jan 1;25(4):199-204.
76. El-Nour KM, Eftaiha AA, Al-Warthan A, Ammar RA. Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry. 2010 Jul 1;3(3):135-40.
77. www.news.medical.com,Michael G., Dr. Surat P.
78. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research. 2000 Dec 15;52(4):662-8.
79. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances. 2009 Jan 1;27(1):76-83.
80. Naskar S, Sharma S, Kuotsu K. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. Journal of Drug Delivery Science and Technology. 2019 Feb 1; 49:66-81.

Recomonded Articles:

Author(s): Kaustubh V. Gavali, Manohar D. Kengar, Kiran V. Chavan, Vaishnavi P. Anekar, Naziya I. Khan

DOI: 10.5958/2231-5691.2019.00020.0         Access: Open Access Read More

Author(s): Prajapati M., Mandloi R., Pillai S, Birla N.

DOI: 10.5958/2231-5691.2020.00021.0         Access: Open Access Read More

Author(s): Ramchandra Jadhav, Kishor More, Dileep Khandekar, Ramesh Yamgar, Sudhir Sawant

DOI:         Access: Open Access Read More

Author(s): Ashok B. Patel, Ashish H. Asnani, Amitkumar J. Vyas, Nilesh K. Patel, Ajay I. Patel, Arvind N. Lumbhani

DOI: 10.52711/2231-5691.2021.00034         Access: Open Access Read More

Author(s): Sheetal B. Gondkar, Shalaka P. Rasal, Ravindra B. Saudagar

DOI: 10.5958/2231-5691.2016.00027.7         Access: Open Access Read More

Author(s): P. Mounika, M.N.L. Aishwarya, Pranabesh Sikdar, S. Prathima, M. Niranajan Babu

DOI: 10.5958/2231-5691.2017.00021.1         Access: Open Access Read More

Author(s): Debarshi Kar Mahapatra, Ruchi S. Shivhare, Pranesh Kumar

DOI: 10.5958/2231-5691.2018.00002.3         Access: Open Access Read More

Author(s): Mohd. Yaqub Khan, Poonam Gupta, Bipin Bihari, Vineet Kumar Sharma, Irfaan Aziz

DOI:         Access: Open Access Read More

Author(s): Priyanka Joshi, Manju, Mohd Vaseem Fateh, N.G. Raghavendra Rao

DOI: 10.5958/2231-5691.2019.00008.X         Access: Open Access Read More

Author(s): P. Lalitha, V. Sachithanandam, N. S. Swarnakumar, R. Sridhar

DOI: 10.5958/2231-5691.2019.00045.5         Access: Open Access Read More

Author(s): P. S. Patil, S. R. Kumbhoje, S.S. Patil

DOI: 10.5958/2231-5691.2015.00018.0         Access: Open Access Read More

Author(s): Kintu Patel, Sankalp Patel,Samir K. Shah

DOI: 10.5958/2231-5691.2017.00035.1         Access: Open Access Read More

Author(s): Ganesh Akula, Rangu Nirmala, CH. Shanthipriya, S. Rohini Reddy, A. Jaswanth

DOI: 10.5958/2231-5691.2017.00010.7         Access: Open Access Read More

Author(s): Muhammad Hamza Ashfaq, Amna Siddique, Sammia Shahid

DOI: 10.52711/2231-5691.2021.00021         Access: Open Access Read More

Asian Journal of Pharmaceutical Research (AJPRes.) is an international, peer-reviewed journal, devoted to pharmaceutical sciences. AJPRes. publishes Original Research Articles, Short Communications..... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5691 


Recent Articles




Tags