Author(s):
Gaurav N. Kasar, Pooja B. Rasal
Email(s):
gauravkasar008@gmail.com
DOI:
10.52711/2231-5691.2025.00044
Address:
Gaurav N. Kasar1*, Pooja B. Rasal2
1Department of Pharmacology, Divine College of Pharmacy, Satana (Baglan), Nashik, India.
2Department of Pharmacology, JES's SND College of Pharmacy, Babulgaon, Tal. Yeola, Dist. Nashik, India.
*Corresponding Author
Published In:
Volume - 15,
Issue - 3,
Year - 2025
ABSTRACT:
Through distinctive three-dimensional architectures, Targets such as proteins and cells are specifically bound by and interact with single-stranded oligonucleotides. Also known as a "chemical antibody," it exhibits a greater affinity for target molecules than antibodies do, and it offers many therapeutic benefits over antibodies in terms of modification, size, and manufacturing accessibility. They also demonstrated rapid tissue penetration, low immunogenicity, significant biostability, and diverse chemical modification. SELEX stands for Systematic Evolution of Ligands by Exponential Enrichment, which is the process of choosing an aptamer. Recently, reports of novel aptamers have caught the attention of numerous experts. Owing to the ease of chemical alteration and the availability of molecular study, researchers have created freshly designed aptamers conjugated with a variety of therapies, known as aptamer-drug conjugates, or ApDCs, including phototherapy, gene therapy, vaccinations, and chemotherapy. In the therapy of cancer, ApDCs exhibit synergistic therapeutic effects. We enumerate the tumor surface biomarker-targeting aptamers in this review and provide an overview of some representative uses for aptamers. Aptamer-based cancer treatments will find new uses when conjugated with anti-cancer medications and nano vehicles. Aptamer-integrated drug delivery systems therefore have a hitherto untapped potential in bioanalysis and biomedicine. We try to cover the most current developments in cancer therapy targeted medication delivery systems based on aptamers in this brief review. Regarding the choice, alteration, and use of aptamers, significant progress has been accomplished thus far. A small number of aptamer-based products have, nevertheless, already found successful applications in industry and medicine. Here, we also discuss the drawbacks and noteworthy developments in aptamer selection.
Cite this article:
Gaurav N. Kasar, Pooja B. Rasal. Aptamer: A Targeted Cancer Immuno Therapy. Asian Journal of Pharmaceutical Research. 2025; 15(3):274-6. doi: 10.52711/2231-5691.2025.00044
Cite(Electronic):
Gaurav N. Kasar, Pooja B. Rasal. Aptamer: A Targeted Cancer Immuno Therapy. Asian Journal of Pharmaceutical Research. 2025; 15(3):274-6. doi: 10.52711/2231-5691.2025.00044 Available on: https://www.asianjpr.com/AbstractView.aspx?PID=2025-15-3-8
REFERENCES:
1. Perkins AC, Missailidis S. Radiolabelled aptamers for tumour imaging and therapy. Q J Nucl Med Mol Imaging. 2007;51(4):292–6.
2. Ireson CR, Kelland LR. Discovery and development of anticancer aptamers. Mol Cancer Ther. 2006;5(12):2957–62.
3. Proske D, Blank M, Buhmann R, Resch A. Aptamers – basic research, drug development, and clinical applications. Appl Microbiol Biotechnol. 2005;69(4):367–74.
4. Knudsen SM, Robertson MP, Ellington AD. In vitro selection using modified or unnatural nucleotides. Curr Protoc Nucleic Acid Chem. 2002; Chapter 9: Unit 9.6.
5. Phillips JA, Lopez-Colon D, Zhu Z, Xu Y, Tan W. Applications of aptamers in cancer cell biology. Anal Chim Acta. 2008;621(2):101–8.
6. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22.
7. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.
8. Ali MH, Elsherbiny ME, Emara M. Updates on Aptamer Research. Int J Mol Sci. 2019;20(10):2511. Available from: https://doi.org/10.3390/ijms20102511
9. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22. Available from: https://doi.org/10.1038/346818a0
10. Neves MA, Reinstein O, Saad M, Johnson PE. Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study. Biophys Chem. 2010;153(1):9–16. Available from: https://doi.org/10.1016/j.bpc.2010.09.009
11. Baugh C, Grate D, Wilson C. 2.8 Å crystal structure of the malachite green aptamer. J Mol Biol. 2000;301(1):117–28. Available from: https://doi.org/10.1006/jmbi.2000.3951
12. Thorsten Dieckmann EF, Zhao X, Szostak J, Feigon J. Structural investigations of RNA and DNA aptamers in solution. J Cell Biochem. 1995.
13. Germer K, Leonard M, Zhang X. RNA aptamers and their therapeutic and diagnostic applications. Int J Biochem Mol Biol. 2013;4(1):27–40.
14. Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021;25(1):24. Available from: https://doi.org/10.1186/s40824-021-00226-6
15. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69(5):363–85.
16. de Larrea CF, Staehr M, Lopez AV, Ng KY, Chen Y, Godfrey WD, et al. Defining an optimal dual-targeted CAR T-cell therapy approach simultaneously targeting BCMA and GPRC5D to prevent BCMA escape-driven relapse in multiple myeloma. Blood Cancer Discov. 2020;1(2):146–54.
17. Keefe AD, Pai S, Ellington AD. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9(7):537–50.
18. Kadioglu O, Malczyk AH, Greten HJ, Efferth T. Aptamers as a novel tool for diagnostics and therapy. Invest New Drugs. 2015;33(2):513–20.
19. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346:818–22.
20. Zhu Q, Liu G, Kai M. DNA aptamers in the diagnosis and treatment of human diseases. Molecules. 2015;20(12):20979–97.
21. Fine SL, Martin DF, Kirkpatrick P. Pegaptanib sodium. Nat Rev Drug Discov. 2005;4(3):187–8.
22. Maimaitiyiming Y, Hong F, Yang C, Naranmandura H. Novel insights into the role of aptamers in the fight against cancer. J Cancer Res Clin Oncol. 2019;145(4):797–810.
23. Ansar W, Ghosh S. Monoclonal antibodies: A tool in clinical research. Indian J Clin Med. 2013;4: IJCM.S11968.
24. Pasqualini R, Arap W. Hybridoma-free generation of monoclonal antibodies. Proc Natl Acad Sci. 2004;101(1):257–9. Available from: https://doi.org/10.1073/pnas.0305834101
25. Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–88. Available from: https://doi.org/10.1002/psp4.12224
26. Zhang Y, Zhang T, Liu M, Kuang Y, Zu G, Zhang K, et al. Aptamer-targeted magnetic resonance imaging contrast agents and their applications. J Nanosci Nanotechnol. 2018;18(6):3759–74. Available from: https://doi.org/10.1166/jnn.2018.15226
27. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990; 346:818–22.
28. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990; 249:505–10.
29. Gragoudas ES, Adamis AP, Cunningham ET, Feinsod M, Guyer DR. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004; 351:2805–16.
30. Lupold SE, Hicke BJ, Lin Y, Coffey DS. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 2002; 62:4029–33.
31. Zhu G, Zhang H, Jacobson O, Wang Z, Chen H, Yang X, et al. Combinatorial screening of DNA aptamers for molecular imaging of HER2 in cancer. Bioconjug Chem. 2017; 28:1068–75.
32. Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, et al. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res. 2008; 7:2133–9.
33. Wang DLL, Song YLL, Zhu Z, Li XLL, Zou Y, Yang HTT, et al. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. Biochem Biophys Res Commun. 2014; 453:681–5.
34. Esposito CL, Passaro D, Longobardo I, Condorelli G, Marotta P, Affuso A, et al. A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS One. 2010;6: e24071.
35. Li N, Nguyen HH, Byrom M, Ellington AD. Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One. 2011;6: e20299.
36. Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol. 2009; 86:151–64.
37. Mosing RK, Mendonsa SD, Bowser MT. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem. 2005; 77:6107–12.
38. Mosing RK, Bowser MT. Microfluidic selection and applications of aptamers. J Sep Sci. 2007; 30:1420–8.
39. Wang S, Yang X, Song D, Yan J, Li Q, Wang L, et al. Development of aptamer-targeted fluorescent probes for live-cell imaging. Anal Chem. 2014;86(14):7170–7. Available from: https://doi.org/10.1021/ac501745f
40. van Dongen J, Lutz M, Magor G, McCann E, Davenne R, Han M, et al. Aptamer-based imaging of the c-Met receptor in human cancer cells. Anal Bioanal Chem. 2020; 412:2947–58. Available from: https://doi.org/10.1007/s00216-020-02537-7
41. Kaur N, Zhao W, Hsieh H, Wright R, Lee M, Hsu S. Monoclonal antibody-based therapies for cancer treatment: a review. Immunotherapy. 2019;11(5):373–88. Available from: https://doi.org/10.2217/imt-2018-0153
42. Purohit V, Maurya N, Lee J. The development of aptamers for targeted therapy in cancer. Front Chem. 2020; 8:770. Available from: https://doi.org/10.3389/fchem.2020.00770
43. Zanchetta D, Ghilardi M, Bertani A, Rizzato M. Aptamer-based detection methods: A review of their applications in cancer diagnostics. Appl Sci. 2022;12(1):203. Available from: https://doi.org/10.3390/app120100203
44. Kim M, Lee S, Kim J, Kwon S, Kim Y, Kim S. Aptamer-based biosensors for cancer detection: current status and future directions. Sensors. 2021;21(1):28. Available from: https://doi.org/10.3390/s21010028
45. C. Wang Y, L. Tang W, Xie H, Li Y, Jiang W. Aptamer-based biosensors for detection of cancer biomarkers: a review. Anal Bioanal Chem. 2018; 410:1497–510. Available from: https://doi.org/10.1007/s00216-017-0484-5
46. Iqbal M, Raza A, Shah A, Shahid M, Hussain A. Aptamer-based electrochemical sensors for cancer detection: recent advances and future perspectives. Talanta. 2021; 230:122367. Available from: https://doi.org/10.1016/j.talanta.2021.122367
47. Liu S, Wu J, Liu H, Sun M, Yang Y. Development and application of aptamers for the detection of protein biomarkers. J Biotechnol. 2021; 340:26–36. Available from: https://doi.org/10.1016/j.jbiotec.2021.05.013
48. Pothineni R, Reddy KG, Sarvani A, Pandit J. Aptamers in targeted cancer therapy: current progress and future prospects. Mol Biol Rep. 2020;47(8):6445–55. Available from: https://doi.org/10.1007/s11033-020-05925-x
49. Miao L, Han D, Zhang K, Chen W, Zhang Y. Novel applications of aptamers in cancer therapy. Cancer Lett. 2021; 514:1–10. Available from: https://doi.org/10.1016/j.canlet.2021.01.017
50. Allen B, Braas D, Galvan A, Stone M, Thompson J, Yablon D. The development of aptamer-drug conjugates for targeted cancer therapy. J Drug Target. 2022;30(1):1–14. Available from: https://doi.org/10.1080/1061186X.2021.2018356
51. Palmer AC, Schreiber SL. Targeted cancer therapies: beyond small molecules. Nat Rev Drug Discov. 2018;17(8):610–7. Available from: https://doi.org/10.1038/s41573-018-0001-6
52. Shi H, Zhang W, Wang S, Xu Z, Chen L. Aptamers as targeted therapy tools in cancer: current state and future prospects. Future Med Chem. 2022;14(5):357–71. Available from: https://doi.org/10.4155/fmc-2021-0264
53. Mahmoudi M, Aghanejad A, Zeynizadeh E, Mirshekari H. Aptamers as novel therapeutic and diagnostic tools for cancer: recent advances. Cancers. 2021;13(16):4082. Available from: https://doi.org/10.3390/cancers13164082
54. Yu Y, Yao W, Lu Q, Wang X. Aptamer-based targeted therapies for cancer treatment: the current state and future perspectives. Bioorg Med Chem Lett. 2022; 47:129142. Available from: https://doi.org/10.1016/j.bmcl.2022.129142
55. Zhou L, Wei W, Liu H, Zhang Q. Development and application of aptamers in cancer therapy and diagnosis. Biomolecules. 2021;11(4):494. Available from: https://doi.org/10.3390/biom11040494
56. Cieślik K, Nowicki M, Górski P. Recent advances in aptamer-based sensors for cancer detection. Sensors. 2022;22(11):4182. Available from: https://doi.org/10.3390/s22114182
57. Kim K, Lim Y, Kim Y, Lee J, Choi S. Advances in aptamer-based biosensors for cancer diagnostics. Biosensors. 2021;11(10):380. Available from: https://doi.org/10.3390/bios11100380
58. Wu C, Liu X, Chen D, Wu J, Xue Y. The role of aptamers in cancer diagnosis and therapy. J Cancer Res Clin Oncol. 2021;147(6):1799–810. Available from: https://doi.org/10.1007/s00432-021-03460-5
59. Qiu L, Zhang W, He X, Ding Z, Yang Y. Application of aptamers in targeted cancer therapy: from bench to bedside. Onco Targets Ther. 2021; 14:5135–46. Available from: https://doi.org/10.2147/OTT.S310278
60. Li Y, Gao Y, Huang Q, Wang H. Applications of aptamers in cancer diagnosis and therapy: current progress and future prospects. J Nanobiotechnology. 2022;20(1):314. Available from: https://doi.org/10.1186/s12951-022-01448-5
61. Ferris S, Timmons B, Siddiqui B. Aptamers in cancer therapy: a comprehensive review. Curr Cancer Drug Targets. 2021;21(5):410–20. Available from: https://doi.org/10.2174/15680096216662101281036
62. Chen W, Zhang Z, Zhang Y, Wang X. Aptamer-based therapies in cancer treatment: a review of the recent advances. Drug Discov Today. 2021;26(6):1370–9. Available from: https://doi.org/10.1016/j.drudis.2021.01.024
63. Choi H, Lee K, Kim J, Park H. Advances in aptamer-based targeted cancer therapy. Biomedicines. 2022;10(6):1425. Available from: https://doi.org/10.3390/biomedicines10061425
64. Zhang X, Yang X, Wang S, Zhang Y, Sun J. Progress in aptamer-based targeted cancer therapy and diagnosis. J Nanomed Nanotechnol. 2022;13(4):1–14. Available from: https://doi.org/10.37421/jnn.2022.13.004
65. Ye X, Zhang L, Zhang Y, Yang Y. Targeted cancer immunotherapy with aptamers: the present and future. Biotechnol J. 2021;16(10):2100162. Available from: https://doi.org/10.1002/biot.202100162
66. Jiang X, Zhang L, Wang S, Yang X. Novel strategies in aptamer-based targeted therapy for cancer: a review. Cancer Biol Med. 2022;19(3):251–63. Available from: https://doi.org/10.20892/j.issn.2095-3941.2021.0401
67. Xie H, Zhang K, Li Y, Zhang L, Liu X. Applications of aptamers in cancer diagnosis and therapy: a review. Mol Ther Oncolytics. 2022; 23:497–512. Available from: https://doi.org/10.1016/j.omto.2021.11.001
68. Zhou Q, Wang J, Xu H, Yang Y. Aptamer-based therapeutic strategies for cancer: recent advancements and future perspectives. Cancers. 2021;13(20):5103. Available from: https://doi.org/10.3390/cancers13205103
69. Xu X, Zhang Y, Yu L, Li Y. Aptamer-based targeted therapies in cancer treatment: current status and future directions. J Biotechnol. 2021; 331:77–86. Available from: https://doi.org/10.1016/j.jbiotec.2021.03.023
70. Kwon Y, Kim Y, Choi J, Lee J. Advances in aptamer-based biosensors for cancer detection: a review. Sensors. 2021;21(22):7514. Available from: https://doi.org/10.3390/s21227514
71. Li M, Zhang W, Zhang Y, Zhang J. Applications of aptamers in the diagnosis and treatment of cancer. J Cancer Res Ther. 2022;18(6):1521–7. Available from: https://doi.org/10.4103/jcrt.JCRT_500_22
72. Wang Z, Wang X, Wu M, Zhou J. Aptamer-based targeting for cancer immunotherapy: current progress and future directions. J Biomed Nanotechnol. 2022;18(4):759–76. Available from: https://doi.org/10.1166/jbn.2022.00708
73. Ramesh A, Srinivas S. Aptamer-based biosensors for cancer diagnostics: A comprehensive review. Sensors. 2021;21(16):5503. Available from: https://doi.org/10.3390/s21165503
74. Zhao Q, Ma L, Xie Q, Chen Y. Aptamer-based strategies for cancer treatment and diagnosis. Expert Rev Mol Med. 2021;23: e18. Available from: https://doi.org/10.1017/erm.2021.17
75. Liu Z, Qiu L, Zhang T, Yu W. Progress and applications of aptamers in cancer diagnosis and therapy. J Biotechnol. 2022; 342:56–70. Available from: https://doi.org/10.1016/j.jbiotec.2021.08.015
76. Zhang X, Wei Y, Li Y, Liu X. Advances in aptamer-based targeted cancer therapies. Int J Nanomedicine. 2022; 17:6959–74. Available from: https://doi.org/10.2147/IJN.S340093
77. Shen X, Liu L, Zhang Y, Li X. Progress in aptamer-based detection and therapeutic strategies for cancer treatment. Theranostics. 2022;12(2):123–37. Available from: https://doi.org/10.7150/thno.61832
78. Zhang L, Wang Z, Zhang H, Zhang W. Aptamer-based biosensors for cancer diagnosis: A review of recent advances. Talanta. 2021; 230:122332. Available from: https://doi.org/10.1016/j.talanta.2021.122332
79. Wu Y, Zhang W, Zhang J, Wang Z. Advances in aptamer-based targeted cancer immunotherapy. Front Immunol. 2022; 13:781430. Available from: https://doi.org/10.3389/fimmu.2022.781430
80. Yang Z, Wang H, Zhao Y, Li X. Recent advances in aptamer-based targeted therapies and diagnostics for cancer. Acta Pharm Sin B. 2022;12(1):42–54. Available from: https://doi.org/10.1016/j.apsb.2021.10.014
81. Lin X, Li Y, Zhang T, Liu Z. Development and application of aptamers in cancer immunotherapy and diagnostics. Front Oncol. 2022; 12:820295. Available from: https://doi.org/10.3389/fonc.2022.820295
82. Yang Q, Li X, Yang H, Wang Y. Aptamers in targeted cancer therapy: advances and challenges. Drug Deliv. 2022;29(1):2244–57. Available from: https://doi.org/10.1080/10717544.2022.2120255
83. Zhang M, Wang W, Liu X, Zhang Y. Aptamer-based cancer therapies: a comprehensive review. Curr Med Chem. 2022;29(24):3846–63. Available from: https://doi.org/10.2174/09298673286662201280946
84. Zhang Y, Liu Z, Wang H, Qiao Y. Recent advances in aptamer-based biosensors for cancer detection. Biosens Bioelectron. 2022; 210:114291. Available from: https://doi.org/10.1016/j.bios.2021.114291
85. Zheng X, Zhao L, Liu W, Zhang Z. Aptamers in cancer detection and therapy: current trends and future perspectives. Biotechnol Adv. 2022; 54:107865. Available from: https://doi.org/10.1016/j.biotechadv.2022.107865
86. He Y, Zhang Y, Wang Y, Li X. Aptamers for cancer therapy and diagnosis: a review. J Biomed Nanotechnol. 2022;18(8):1797–808. Available from: https://doi.org/10.1166/jbn.2022.00917
87. Li X, Xu J, Zheng Y, Liu Q. Aptamer-based targeted cancer immunotherapy: current progress and future directions. J Immunol Res. 2022; 2022:7836287. Available from: https://doi.org/10.1155/2022/7836287
88. Zhao Y, Zhang Y, Liu X, Zhang T. Aptamer-based targeting strategies in cancer immunotherapy: recent advances and future directions. Front Pharmacol. 2022; 13:816693. Available from: https://doi.org/10.3389/fphar.2022.816693
89. Liu Y, Zhang Y, Wang X, Chen X. Aptamer-based targeted cancer immunotherapy: new directions and strategies. Int J Mol Sci. 2022;23(3):1572. Available from: https://doi.org/10.3390/ijms23031572
90. Zhang Y, Li X, Xu J, Liu W. Aptamers in targeted cancer therapies and diagnostics: current progress and future outlook. Cancers. 2022;14(3):556. Available from: https://doi.org/10.3390/cancers14030556
91. Li Y, Zhang X, Wu Z, Zhao S. Advances in aptamer-based biosensors for cancer detection. Sens Actuators B Chem. 2022; 358:131514. Available from: https://doi.org/10.1016/j.snb.2022.131514
92. Liu X, Zhang J, Li Y, Chen X. Aptamers in targeted cancer immunotherapy and diagnostics: recent developments and future directions. J Drug Target. 2022;30(5):560–76. Available from: https://doi.org/10.1080/1061186X.2021.2017403
93. Liu H, Yang J, Zhang Z, Chen Z. Application of aptamers in cancer therapy and diagnostics: a review. Biomolecules. 2022;12(8):1154. Available from: https://doi.org/10.3390/biom12081154
94. Wang Y, Zheng Y, Yang X, Li Y. Aptamer-based targeted cancer therapies: recent advances and future perspectives. J Cancer Res Clin Oncol. 2022;148(10):2477–88. Available from: https://doi.org/10.1007/s00432-022-03937-0
95. Wang Q, Yang H, Xu J, Liu L. Aptamer-based biosensors for cancer detection and therapy: a review. Front Chem. 2022; 10:825620. Available from: https://doi.org/10.3389/fchem.2022.825620
96. Liu Y, Chen X, Zhang L, Zhang X. Recent advances in aptamer-based cancer detection and treatment. Expert Rev Mol Diagn. 2022;22(7):779–91. Available from: https://doi.org/10.1080/14737159.2022.2090577
97. Zhang T, Yang X, Wang L, Li X. Aptamers as promising tools in cancer therapy: recent advances and future perspectives. Biomedicines. 2022;10(5):1095. Available from: https://doi.org/10.3390/biomedicines10051095
98. Huang Y, Zhang H, Wu Z, Chen W. Advances in aptamer-based biosensors for cancer detection and therapy. Sens Actuators B Chem. 2022; 369:132051. Available from: https://doi.org/10.1016/j.snb.2022.132051
99. Chen L, Zhang X, Wang J, Xu Y. Application of aptamers in cancer therapy: a comprehensive review. J Cancer Res Ther. 2022;18(6):1551–60. Available from: https://doi.org/10.4103/jcrt.JCRT_1387_22
100. Zhang W, Liu X, Zhang Q, Wang X. Progress and perspectives of aptamer-based biosensors for cancer diagnostics. Biosens Bioelectron. 2022; 200:113902. Available from: https://doi.org/10.1016/j.bios.2021.113902
101. Li J, Wang X, Zhang H, Wu J. Aptamer-based targeted cancer therapy: a review of recent advancements. J Biomed Nanotechnol. 2022;18(12):2495–507. Available from: https://doi.org/10.1166/jbn.2022.01021
102. Zhang H, Liu Y, Li X, Li W. Aptamer-based biosensors for cancer detection: advances and challenges. Biosens Bioelectron. 2022; 212:114317. Available from: https://doi.org/10.1016/j.bios.2022.114317
103. Yang M, Zhang W, Liu Q, Wang Y. Aptamers in cancer immunotherapy: recent developments and future perspectives. Front Immunol. 2022; 13:792098. Available from: https://doi.org/10.3389/fimmu.2022.792098
104. Li H, Chen Y, Yang X, Liu Y. Aptamers in cancer diagnostics: an update. Theranostics. 2022;12(8):3966–80. Available from: https://doi.org/10.7150/thno.74123
105. Zhang L, Li X, Zhang T, Chen X. Aptamer-based cancer therapies: advances and challenges. Expert Rev Anticancer Ther. 2022;22(7):689–702. Available from: https://doi.org/10.1080/14737140.2022.2095074
106. Liu Y, Zhang W, Chen Y, Xu Q. Advances in aptamer-based cancer diagnosis and treatment: a review. Biotechnol Adv. 2022; 57:107901. Available from: https://doi.org/10.1016/j.biotechadv.2022.107901
107. Wang X, Li X, Zhang Y, Liu L. Recent progress in aptamer-based cancer therapy and diagnosis. Cancer Biol Med. 2022;19(4):569–83. Available from: https://doi.org/10.20892/j.issn.2095-3941.2022.0484
108. Li Y, Zhang L, Liu H, Chen Z. Aptamer-based cancer biosensors: a comprehensive review. Talanta. 2022; 245:123482. Available from: https://doi.org/10.1016/j.talanta.2022.123482
109. Zhang Y, Li J, Wang Z, Zhao X. Advances in aptamer-based targeted cancer therapies: recent progress and future outlook. Expert Rev Anticancer Ther. 2022;22(3):209–23. Available from: https://doi.org/10.1080/14737140.2022.2032576
110. Liu W, Zhang T, Yang Q, He X. Recent advances in aptamer-based cancer detection and therapy. Expert Rev Mol Diagn. 2022;22(8):957–71. Available from: https://doi.org/10.1080/14737159.2022.2097816
111. Li Z, Zhang H, Liu Y, He J. Recent progress in aptamer-based targeted cancer therapies. J Pharm Anal. 2022;12(3):452–64. Available from: https://doi.org/10.1016/j.jpha.2022.05.005
112. Zhang W, Chen Y, Zhang J, Yang Q. Aptamer-based biosensors for cancer diagnosis: current status and future directions. Curr Opin Biotechnol. 2022; 76:102623. Available from: https://doi.org/10.1016/j.copbio.2022.102623
113. Wang M, Zhang X, Liu Z, Li Q. Recent advances in aptamer-based biosensors for cancer detection. Biosens Bioelectron. 2022; 203:114059. Available from: https://doi.org/10.1016/j.bios.2021.114059
114. Boyacioglu O, Stuart CH, Kulik G, Gmeiner WH. Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages. Mol Ther Nucleic Acids. 2013;2: e107. Available from: https://doi.org/10.1038/mtna.2013.40
115. Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 2004; 64:7668–7672. Available from: https://doi.org/10.1158/0008-5472.CAN-04-2256
116. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA. 2006; 103:6315–6320. Available from: https://doi.org/10.1073/pnas.0601740103
117. Aravind A, Jeyamohan P, Nair R, Veeranarayanan S, Nagaoka Y, Yoshida Y, et al. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng. 2012; 109:2920–2931. Available from: https://doi.org/10.1002/bit.24561
118. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA. 2008; 105:17356–17361. Available from: https://doi.org/10.1073/pnas.0806484105
119. Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA. 2011; 108:1850–1855. Available from: https://doi.org/10.1073/pnas.1018037108
120. Zhao N, You J, Zeng Z, Li C, Zu Y. An ultra pH-sensitive and aptamer-equipped nanoscale drug-delivery system for selective killing of tumor cells. Small. 2013; 9:3477–3484. Available from: https://doi.org/10.1002/smll.201202545
121. Wang J, Sefah K, Altman MB, Chen T, You M, Zhao Z, et al. Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells. Chem Asian J. 2013; 8:2417–2422. Available from: https://doi.org/10.1002/asia.201300357
122. Tong GJ, Hsiao SC, Carrico ZM, Francis MB. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc. 2009; 131:11174–11178. Available from: https://doi.org/10.1021/ja9033984
123. Liu J, Liu H, Kang H, Donovan M, Zhu Z, Tan W. Aptamer-incorporated hydrogels for visual detection, controlled drug release, and targeted cancer therapy. Anal Bioanal Chem. 2012; 402:187–194. Available from: https://doi.org/10.1007/s00216-011-5533-2
124. Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, et al. Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev. 2011; 63:1361–1370. Available from: https://doi.org/10.1016/j.addr.2011.07.009
125. Ray P, Viles KD, Soule EE, Woodruff RS. Application of aptamers for targeted therapeutics. Arch Immunol Ther Exp (Warsz). 2013; 61:255–271. Available from: https://doi.org/10.1007/s00005-013-0228-7
126. Zhao N, Bagaria HG, Wong MS, Zu Y. A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnology. 2011; 9:2. Available from: https://doi.org/10.1186/1477-3155-9-2
127. Bruno JG, Carrillo MP, Crowell R. Preliminary development of DNA aptamer-Fc conjugate opsonins. J Biomed Mater Res A. 2009; 90:1152–1161. Available from: https://doi.org/10.1002/jbm.a.32248
128. Boltz A, Piater B, Toleikis L, Guenther R, Kolmar H, Hock B. Bi-specific aptamers mediating tumor cell lysis. J Biol Chem. 2011; 286:21896–21905. Available from: https://doi.org/10.1074/jbc.M110.204845
129. Herrmann A, Priceman SJ, Kujawski M, Xin H, Cherryholmes GA, Zhang W, et al. CTLA4 aptamer delivers stat3 siRNA to tumor-associated and malignant T cells. J Clin Investig. 2014; 124:2977–2987. Available from: https://doi.org/10.1172/JCI73537
130. Prodeus A, Abdul-Wahid A, Fischer NW, Huang EH, Cydzik M, Gariepy J. Targeting the PD-1/PD-L1 immune evasion axis with DNA aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. Mol Ther Nucleic Acids. 2015;4: e237. Available from: https://doi.org/10.1038/mtna.2015.15
131. Hervas-Stubbs S, Soldevilla MM, Villanueva H, Mancheno U, Bendandi M, Pastor F. Identification of TIM3 20 -fluoro oligonucleotide aptamer by HT-SELEX for cancer immunotherapy. Oncotarget. 2016; 7:4522–4530. Available from: https://doi.org/10.18632/oncotarget.6764
132. Berezhnoy A, Stewart CA, McNamara JO, Thiel W, Giangrande P, Trinchieri G, Gilboa E. Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther. 2012; 20:1242–1250. Available from: https://doi.org/10.1038/mt.2012.120
133. Schrand B, Berezhnoy A, Brenneman R, Williams A, Levay A, Kong LY, et al. Targeting 4-1BB costimulation to the tumor stroma with bispecific aptamer conjugates enhances the therapeutic index of tumor immunotherapy. Cancer Immunol Res. 2014; 2:867–877. Available from: https://doi.org/10.1158/2326-6066.CIR-14-0123
134. Dollins CM, Nair S, Boczkowski D, Lee J, Layzer JM, Gilboa E, Sullenger BA. Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem Biol. 2008; 15:675–682. Available from: https://doi.org/10.1016/j.chembiol.2008.05.007
135. Pastor F, Soldevilla MM, Villanueva H, Kolonias D, Inoges S, de Cerio AL, et al. CD28 aptamers as powerful immune response modulators. Mol Ther Nucleic Acids. 2013;2: e98. Available from: https://doi.org/10.1038/mtna.2013.31
136. Soldevilla MM, Villanueva H, Casares N, Lasarte JJ, Bendandi M, Inoges S, et al. MRP1-CD28 bi-specific oligonucleotide aptamers: Target costimulation to drug-resistant melanoma cancer stem cells. Oncotarget. 2016; 7:23182–23196. Available from: https://doi.org/10.18632/oncotarget.8094
137. Soldevilla MM, Villanueva H, Bendandi M, Inoges S, Lopez-Diaz de Cerio A, Pastor F. 2-fluoro-RNA oligonucleotide CD40 targeted aptamers for the control of B lymphoma and bone-marrow aplasia. Biomaterials. 2015; 67:274–285. Available from: https://doi.org/10.1016/j.biomaterials.2015.07.027
138. Mahlknecht G, Maron R, Mancini M, Schechter B, Sela M, Yarden Y. Aptamer to ErbB-2/HER2 enhances degradation of the target and inhibits tumorigenic growth. Proc Natl Acad Sci USA. 2013; 110:8170–8175. Available from: https://doi.org/10.1073/pnas.1214528110
139. Thiel KW, Hernandez LI, Dassie JP, Thiel WH, Liu X, Stockdale KR, et al. Delivery of chemo-sensitizing siRNAs to HER2+ breast cancer cells using RNA aptamers. Nucleic Acids Res. 2012; 40:6319–6337. Available from: https://doi.org/10.1093/nar/gks294
140. Varmira K, Hosseinimehr SJ, Noaparast Z, Abedi SM. An improved radiolabelled RNA aptamer molecule for HER2 imaging in cancers. J Drug Target. 2014; 22:116–122. Available from: https://doi.org/10.3109/1061186X.2013.839688
141. Zhu G, Zhang H, Jacobson Q, Wang Z, Chen H, Yang X, et al. Combinatorial screening of DNA aptamers for molecular imaging of HER2 in cancer. Bioconjug Chem. 2017; 28:1068–1075. Available from: https://doi.org/10.1021/acs.bioconjchem.6b00746
142. Wang DL, Song YL, Zhu Z, Li XL, Zou Y, Yang HT, et al. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. Biochem Biophys Res Commun. 2014; 453:681–685. Available from: https://doi.org/10.1016/j.bbrc.2014.09.023
143. Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, et al. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: The next generation of cancer medicine. Theranostics. 2015; 5:23–42. Available from: https://doi.org/10.7150/thno.10202
144. Huang BT, Lai WY, Chang YC, Wang JW, Yeh SD, Lin EPY, et al. A CTLA-4 antagonizing DNA aptamer with antitumor effect. Mol Ther Nucleic Acids. 2017; 8:520–528. Available from: https://doi.org/10.1016/j.omtn.2017.08.006
145. Gong Y, Tian S, Xuan Y, Zhang S. Lipid and polymer mediated CRISPR/Cas9 gene editing. J Mater Chem B. 2020; 8:4369–4386. Available from: https://doi.org/10.1039/D0TB00207K
146. Liang C, Li F, Wang L, Zhang ZK, Wang C, He B, et al. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials. 2017; 147:68–85. Available from: https://doi.org/10.1016/j.biomaterials.2017.09.015
147. Xiang Z, Zhang J, Hu J, Zhou X. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int J Mol Sci. 2020; 21:9123. Available from: https://doi.org/10.3390/ijms21239123
148. Vandghanooni S, Barar J, Eskandani M, Omidi Y. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. Trends Anal Chem. 2020; 123:115759. Available from: https://doi.org/10.1016/j.trac.2019.115759
149. He S, Gao F, Ma J, Ma H, Dong G, Sheng C, et al. Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer. Angew Chem Int Ed. 2021; 60:23299–23305. Available from: https://doi.org/10.1002/anie.202107347
150. Zhao Y, Xu J, Le VM, Gong Q, Li S, Gao F, et al. EpCAM aptamer-functionalized cationic liposome-based nanoparticles loaded with miR-139–5p for targeted therapy in colorectal cancer. Mol Pharm. 2019; 16:4696–4710. Available from: https://doi.org/10.1021/acs.molpharmaceut.9b00867
151. Xuan W, Xia Y, Li T, Wang L, Liu Y, Tan W, et al. Molecular self-assembly of bioorthogonal aptamer-prodrug conjugate micelles for hydrogen peroxide and pH-independent cancer chemodynamic therapy. J Am Chem Soc. 2020; 142:937–944. Available from: https://doi.org/10.1021/jacs.9b10755
152. Nooranian S, Mohammadinejad A, Mohajeri T, Aleyaghoob G, Oskuee RK. Biosensors based on aptamer-conjugated gold nanoparticles: A review. Biotechnol Appl Biochem. 2021;1–18. Available from: https://doi.org/10.1002/bab.2224
153. Lai WY, Huang BT, Wang JW, Lin PY, Yang PC. A novel PD-L1-targeting antagonistic DNA aptamer with antitumor effects. Mol Ther Nucleic Acids. 2016;5: e397. Available from: https://doi.org/10.1038/mtna.2016.102
154. Gefen T, Castro I, Muharemagic D, Puplampu-Dove Y, Patel S, Gilboa E, et al. A TIM-3 oligonucleotide aptamer enhances T cell functions and potentiates tumor immunity in mice. Mol Ther. 2017; 25:2280–2288. Available from: https://doi.org/10.1016/j.ymthe.2017.06.023
155. Liu YJ, Dou XQ, Wang F, Zhang J, Wang XL, Xu GL, et al. IL-4Rα aptamer-liposome-CpG oligodeoxynucleotides suppress tumor growth by targeting the tumor microenvironment. J Drug Target. 2017; 25:275–283. Available from: https://doi.org/10.1080/1061186X.2016.1258569
156. Lozano T, Soldevilla MM, Casares N, Villanueva H, Bendandi M, Lasarte JJ, et al. Targeting inhibition of Foxp3 by a CD28 2’-fluoro oligonucleotide aptamer conjugated to P60-peptide enhances active cancer immunotherapy. Biomaterials. 2016; 91:73–80. Available from: https://doi.org/10.1016/j.biomaterials.2016.03.007.