Author(s): B. Dharani, Suba. A

Email(s): doctordharanibhaskaran@gmail.com

DOI: 10.52711/2231-5691.2025.00053   

Address: B. Dharani*, Suba. A
A.C.S. Medical College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai, India.
*Corresponding Author

Published In:   Volume - 15,      Issue - 3,     Year - 2025


ABSTRACT:
Background: The purpose of this review is to systematically explore the mechanisms behind Platelet-Rich Plasma (PRP) therapy and its therapeutic potential in promoting wound healing in Diabetic Foot Ulcers (DFU). This review aims to comprehensively evaluate the roles of PRP in addressing the challenges associated with DFU healing, such as prolonged inflammation, poor blood flow and impaired immunity. Ultimately, the goal is to provide a deeper understanding of PRP's clinical applications and its potential to improve the treatment outcomes for DFU, thereby encouraging further research and clinical advancements in this field. Methods: Eligible studies included cohort studies, RCTs, observational studies, and case-control studies published in English, focusing on diabetic ulcers and PRP therapy. A narrative synthesis was performed, with no meta-analysis due to study heterogeneity. Discussion: PRP promotes wound healing in diabetic ulcer (DU) through key mechanisms, including growth factor-driven angiogenesis, inflammation modulation, cellular differentiation and antibacterial properties. Growth factors like PDGF, VEGF and TGF-ß enhance blood flow, tissue regeneration and collagen synthesis, while PRP activates endothelial cells for neovascularization. It also balances pro- and anti-inflammatory cytokines, supporting tissue repair. PRP’s cellular components, including leukocytes, aid in debris clearance and tissue regeneration. Additionally, PRP's antibacterial effects help prevent infections, making it a promising treatment for DU. Compared to other therapies, PRP offers significant improvements in wound healing, reduces amputation risks and is more cost-effective with fewer side effects. Conclusion: PRP therapy offers a promising treatment for DU by promoting wound healing through angiogenesis, tissue regeneration, inflammation modulation and antibacterial effects. PRP shows significant promise for chronic, non-healing diabetic ulcers but requires further optimization for broader clinical application.


Cite this article:
B. Dharani, Suba. A. Advancing Diabetic Wound Care with Platelet Rich Plasma: A Systematic Review of Mechanisms and Therapeutic Potential. Asian Journal of Pharmaceutical Research. 2025; 15(3):337-6. doi: 10.52711/2231-5691.2025.00053

Cite(Electronic):
B. Dharani, Suba. A. Advancing Diabetic Wound Care with Platelet Rich Plasma: A Systematic Review of Mechanisms and Therapeutic Potential. Asian Journal of Pharmaceutical Research. 2025; 15(3):337-6. doi: 10.52711/2231-5691.2025.00053   Available on: https://www.asianjpr.com/AbstractView.aspx?PID=2025-15-3-17


REFERENCE:
1.    Sun H, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183(109119): 109119; doi: 10.1016/j.diabres.2021.109119.
2.    Ogurtsova K, et al. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract 2022;183(109118):109118; doi: 10.1016/j.diabres.2021.109118.
3.    Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017; 376(24):2367–2375; doi: 10.1056/NEJMra1615439.
4.    Lavery LA, et al. WHS guidelines update: Diabetic foot ulcer treatment guidelines: DFU guidelines. Wound Repair Regen. 2016; 24(1): 112–126; doi: 10.1111/wrr.12391.
5.    Zeng X, et al. Three-week topical treatment with placenta-derived mesenchymal stem cells hydrogel in a patient with diabetic foot ulcer: A case report. Medicine (Baltimore). 2017; 96(51): e9212; doi: 10.1097/MD.0000000000009212.
6.    Bus SA. The role of pressure offloading on diabetic foot ulcer healing and prevention of recurrence. Plast Reconstr Surg. 2016; 138(3 Suppl): 179S-187S; doi: 10.1097/PRS.0000000000002686.
7.    Dai J, et al. Assessment of the risk factors of multidrug-resistant organism infection in adults with type 1 or type 2 diabetes and diabetic foot ulcer. Can J Diabetes. 2020; 44(4): 342–349; doi: 10.1016/j.jcjd.2019.10.009.
8.    V. Sangeetha, P. Sankari Nandhini, M. Saraswathy, D. Sasmitha, T. Senthilkumar, R. Deepa. Diabetic Foot Care: A study. Asian J. Nursing Education and Research. 2019; 9(3):422-428.
9.    Hisham A. Abbas. Diabetic Foot Infection. Research J. Pharm. and Tech. 2015; 8(5): 575-579.
10.    Jhakeshwar Prasad, Ashish Kumar Netam, Mahendra Kumar Sahu, Trilochan Satapathy. Current Concepts in Clinical Based Management of Diabetic Foot Infections: A Review. Res. J. Pharmacology and Pharmacodynamics. 2017; 9(3): 157-166.
11.    Oliver TI, Mutluoglu M. Diabetic Foot Ulcer. The Chinese Medical Association. 2022.
12.    Volmer-Thole M, Lobmann R. Neuropathy and diabetic foot syndrome. Int J Mol Sci. 2016; 17(6): 917; doi: 10.3390/ijms17060917.
13.    Zhang P, et al. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med. 2017; 49(2): 106–116; doi: 10.1080/07853890.2016.1231932.
14.    Alvarsson A, et al. A retrospective analysis of amputation rates in diabetic patients: can lower extremity amputations be further prevented? Cardiovasc Diabetol. 2012; 11(1): 18; doi: 10.1186/1475-2840-11-18.
15.    Riedel U, et al. Wundbehandlung bei Diabetes und diabetischem Fußulkus. Hautarzt. 2020; 71(11): 835–842; doi: 10.1007/s00105-020-04699-9.
16.    Morbach S, et al. Long-term prognosis of diabetic foot patients and their limbs: amputation and death over the course of a decade. Diabetes Care. 2012; 35(10): 2021–2027; doi: 10.2337/dc12-0200.
17.    Drago L, et al. antimicrobial activity of pure platelet-rich plasma against microorganisms isolated from oral cavity. BMC Microbiol. 2013; 13:47; doi: 10.1186/1471-2180-13-47.
18.    Cieslik-Bielecka A, et al. Autologous platelets and leukocytes can improve healing of infected high-energy soft tissue injury. Transfus Apher Sci. 2009; 41(1): 9–12; doi: 10.1016/j.transci.2009.05.006.
19.    Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004; 62(4): 489–496; doi: 10.1016/j.joms.2003.12.003.
20.    Wasterlain AS, et al. The systemic effects of platelet-rich plasma injection. Am J Sports Med. 2013; 41(1): 186–193; doi: 10.1177/0363546512466383.
21.    Angel MJ, Sgaglione NA, Grande DA. Clinical applications of bioactive factors in sports medicine: Current concepts and future trends. Sports Med Arthrosc. 2006; 14(3): 138–145; doi: 10.1097/00132585-200609000-00005.
22.    Anitua E, et al. New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol. 2006; 24(5): 227–234; doi: 10.1016/j.tibtech.2006.02.010.
23.    Sampson S, Gerhardt M, Mandelbaum B. Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr Rev Musculoskelet Med. 2008; 1(3–4): 165–174; doi: 10.1007/s12178-008-9032-5.
24.    Samara M. Ali, Sarmad M.H. Mohammed Zeiny, Mohammed Qasim MalAllah AlAtrakji. Effect of Prp on Gingival Health in Pregnants: Immunological Aspect. Research J. Pharm. and Tech. 2017; 10(11): 3969-3973.
25.    Sowmya M. V, Mangayarkarasi. M. Effect of Physiotherapy Intervention after Platelet Rich Plasma Procedure in Subjects with Grade 3 Osteoarthritis Knee. Research J. Pharm. and Tech. 2020; 13(5): 2065-2068.
26.    Hojat Rezazadeh, Mehrnaz Okhovatfard. Effect of Platelet Rich Plasma in Regenerative Endodontic Treatment: A Review of Clinical Trials. Research Journal of Pharmacy and Technology. 2023; 16(11): 5562-6.
27.    Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009; 27(3): 158–167; doi: 10.1016/j.tibtech.2008.11.009.
28.    Shao S, Pan R, Chen Y. Autologous platelet-rich plasma for diabetic foot ulcer. Trends Endocrinol Metab. 2020; 31(12): 885–890; doi: 10.1016/j.tem.2020.10.003.
29.    Huber SC, et al. In vitro study of the role of thrombin in platelet rich plasma (PRP) preparation: utility for gel formation and impact in growth factors release. J Stem Cells Regen Med. 2016; 12(1): 2–9; doi: 10.46582/jsrm.1201002.
30.    Jørgensen TS, et al. Assessment of diabetic foot ulcers based on pictorial material: an interobserver study. J Wound Care. 2020; 29(11): 658–663; doi: 10.12968/jowc.2020.29.11.658.
31.    Veves A, Giurini JM, Guzman RJ. The diabetic foot: Medical and Surgical Management. Springer. 2018.
32.    Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: A cellular perspective. Physiol Rev. 2019; 99(1): 665–706; doi: 10.1152/physrev.00067.2017.
33.    Shah A, Amini-Nik S. The role of phytochemicals in the inflammatory phase of wound healing. Int J Mol Sci. 2017; 18(5); doi: 10.3390/ijms18051068.
34.    Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020; 10(9): 200223; doi: 10.1098/rsob.200223.
35.    Pradhan L, et al. Gene Expression of Pro-Inflammatory Cytokines and Neuropeptides in Diabetic Wound Healing. Journal of Surgical Research. 2009; 167(2): 336–42. Available from: https://doi.org/10.1016/j.jss.2009.09.012
36.    Tsourdi E, et al. Current aspects in the pathophysiology and treatment of chronic wounds in diabetes mellitus. Biomed Res Int. 2013; 2013: 385641; doi: 10.1155/2013/385641.
37.    Singh SP, et al. Role of platelet-rich plasma in healing diabetic foot ulcers: a prospective study. J Wound Care. 2018; 27(9): 550–556. doi: 10.12968/jowc.2018.27.9.550.
38.    Schäfer M. Oxidative stress and inflammation in diabetic foot ulcers. J Diabetes Res. 2013; 2013: 1–9.
39.    Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013; 93(1): 137–188; doi: 10.1152/physrev.00045.2011.
40.    Bhardwaj N, Chouhan D, Mandal BB. Tissue engineered skin and wound healing: Current strategies and future directions. Curr Pharm Des. 2017; 23: 3455–82. https://doi.org/10.2174/1381612823666170526094606
41.    Voza FA, et al. Fibroblasts in Diabetic Foot Ulcers. International Journal of Molecular Sciences. 2024 Feb 11; 25(4): 2172. Available from: https://doi.org/10.3390/ijms25042172
42.    Williams DT, Harding KG. New treatments for diabetic neuropathic foot ulceration: Views from a wound healing unit. Current Diabetes Reports. 2003 Nov 1; 3(6). Available from: https://doi.org/10.1007/s11892-003-0009-x
43.    Edmonds M. A natural history and framework for managing diabetic foot ulcers. British Journal of Nursing. 2008 Jun 12; 17(Sup5): S20–9. Available from: https://doi.org/10.12968/bjon.2008.17.sup5.29648
44.    Margolis DJ, Kantor J, Berlin JA. Healing of diabetic neuropathic foot ulcers receiving standard treatment. A meta-analysis. Diabetes Care. 1999 May 1; 22(5): 692–5. Available from: https://doi.org/10.2337/diacare.22.5.692
45.    Younger A. The Diabetic Foot: Medical and Surgical Management. 2002. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3684668/
46.    Toyoda T, et al. Direct activation of platelets by addition of CaCl2 leads coagulation of platelet-rich plasma. Int J Implant Dent. 2018; 4(1): 23; doi: 10.1186/s40729-018-0134-6.
47.    Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: A review and author’s perspective. J Cutan Aesthet Surg. 2014; 7(4): 189–197; doi: 10.4103/0974-2077.150734.
48.    Mannaioni PF, Di Bello MG, Masini E. Platelets and inflammation: role of platelet-derived growth factor, adhesion molecules and histamine. Inflamm Res. 1997; 46(1): 4–18; doi: 10.1007/PL00000158.
49.    Sharif PS, Abdollahi M. The role of platelets in bone remodeling. Inflamm Allergy Drug Targets. 2010; 9(5): 393–399; doi: 10.2174/187152810793938044.
50.    Bowen-Pope DF, Raines EW. History of discovery: platelet-derived growth factor: Platelet-derived growth factor. Arterioscler Thromb Vasc Biol. 2011; 31(11): 2397–2401; doi: 10.1161/ATVBAHA.108.179556.
51.    Pintucci G, et al. Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF). Thromb Haemost. 2002; 88:834–42
52.    Salgado R, et al. Platelets and vascular endothelial growth factor (VEGF): a morphological and functional study. Angiogenesis. 2001; 4:37–43. https://doi.org/10.1023/a:1016611230747
53.    Kim E-S, Kim J-J, Park E-J. Angiogenic factor-enriched platelet-rich plasma enhancesin vivobone formation around alloplastic graft material. J Adv Prosthodont. 2010; 2:7. https://doi.org/10.4047/jap.2010.2.1.7
54.    Martí-Carvajal AJ, et al. Growth factors for treating diabetic foot ulcers. Cochrane Database Syst Rev. 2015; 2015(10): CD008548; doi: 10.1002/14651858.CD008548.pub2.
55.    Martínez CE, Smith PC, Palma Alvarado VA. The influence of platelet-derived products on angiogenesis and tissue repair: a concise update. Front Physiol. 2015; 6: 290; doi: 10.3389/fphys.2015.00290.
56.    Ueda M, Nishino Y. Cell-based cytokine therapy for skin rejuvenation. J Craniofac Surg. 2010; 21(6): 1861–1866; doi: 10.1097/SCS.0b013e3181f43f0a.
57.    Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle). 2014; 3: 647–61. https://doi.org/10.1089/wound.2013.0517
58.    Lange S, et al. Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species. Cardiovasc Res. 2009; 81: 159–68. https://doi.org/10.1093/cvr/cvn258
59.    Wei W, et al. Platelet-rich plasma promotes wound repair in diabetic foot ulcer mice via the VEGFA/VEGFR2/ERK pathway. Growth Factors. 2024: 1–10. https://doi.org/10.1080/08977194.2024.2422014
60.    Alsousou J, et al. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature: A review of the literature. J Bone Joint Surg Br. 2009; 91(8): 987–996; doi: 10.1302/0301-620X.91B8.22546.
61.    Heldin C-H, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999; 79(4): 1283–1316; doi: 10.1152/physrev.1999.79.4.1283.
62.    Kao H-K, et al. Peripheral blood fibrocytes: enhancement of wound healing by cell proliferation, re-epithelialization, contraction, and angiogenesis. Ann Surg. 2011; 254(6): 1066–1074; doi: 10.1097/SLA.0b013e3182251559.
63.    Koriyama Y, et al. Upregulation of IGF-I in the goldfish retinal ganglion cells during the early stage of optic nerve regeneration. Neurochem Int. 2007; 50: 749–56. https://doi.org/10.1016/j.neuint.2007.01.012
64.    Lin G, et al. Neurotrophic effects of brain-derived neurotrophic factor and vascular endothelial growth factor in major pelvic ganglia of young and aged rats: Neurotrophic effect of BDNF and VEGF in the major pelvic ganglia. BJU Int.  2010; 105(1): 114–120; doi: 10.1111/j.1464-410X.2009.08647. x.
65.    Eppley BL, Pietrzak WS, Blanton M. Platelet-rich plasma: a review of biology and applications in plastic surgery. Plast Reconstr Surg. 2006; 118(6): 147e–159e; doi: 10.1097/01.prs.0000239606.92676.cf.
66.    Ahmed M, et al. Platelet-rich plasma for the treatment of clean diabetic foot ulcers. Ann Vasc Surg. 2017; 38: 206–11. https://doi.org/10.1016/j.avsg.2016.04.023
67.    Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy - future or trend? Arthritis Res Ther. 2012; 14(4): 219; doi: 10.1186/ar3914.
68.    Davis VL, et al. Platelet-rich preparations to improve healing. Part I: workable options for every size practice. J Oral Implantol. 2014; 40(4): 500–510; doi: 10.1563/AAID-JOI-D-12-00104.
69.    Gurtner GC, et al. Wound repair and regeneration. Nature 2008; 453(7193): 314–321; doi: 10.1038/nature07039.
70.    Berlanga-Acosta J, et al. Epidermal growth factor in clinical practice - a review of its biological actions, clinical indications and safety implications. Int Wound J. 2009; 6(5): 331–346; doi: 10.1111/j.1742-481x.2009.00622.x.
71.    Knezevic NN, et al. Is platelet-rich plasma a future therapy in pain management? Med Clin North Am. 2016; 100(1): 199–217; doi: 10.1016/j.mcna.2015.08.014.
72.    Marques LF, et al. Platelet-rich plasma (PRP): methodological aspects and clinical applications. Platelets. 2015; 26(2): 101–113; doi: 10.3109/09537104.2014.881991.
73.    Barrientos S, et al. Growth factors and cytokines in wound healing: Growth factors and cytokines in wound healing. Wound Repair Regen. 2008; 16(5): 585–601; doi: 10.1111/j.1524-475X.2008.00410. x.
74.    David J-P, Schett G. TNF and bone. Current Directions in Autoimmunity, Basel: KARGER. 2010, p. 135–44
75.    Cachaço AS, et al. TNF-alpha regulates the effects of irradiation in the mouse bone marrow microenvironment. PLoS One. 2010; 5: e8980. https://doi.org/10.1371/journal.pone.0008980
76.    Saxena A, et al. Interleukin-10 paradox: A potent immunoregulatory cytokine that has been difficult to harness for immunotherapy. Cytokine. 2015; 74(1): 27–34; doi: 10.1016/j.cyto.2014.10.031.
77.    Zhang J-M, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin 2007;45(2):27–37; doi: 10.1097/AIA.0b013e318034194e.
78.    Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014; 5: 123. https://doi.org/10.3389/fphar.2014.00123
79.    Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017; 356: 1026–30. https://doi.org/10.1126/science.aam7928.
80.    Xie X, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012; 33: 7008–18. https://doi.org/10.1016/j.biomaterials.2012.06.058.
81.    Giannopoulou M, et al. Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-kappaB signaling. Am J Pathol. 2008; 173: 30–41. https://doi.org/10.2353/ajpath.2008.070583.
82.    Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature. 2016; 529: 307–15. https://doi.org/10.1038/nature17039
83.    Cooke JP. Inflammation and its role in regeneration and repair: A caution for novel anti-inflammatory therapies. Circ Res 2019; 124(8): 1166–1168; doi: 10.1161/CIRCRESAHA.118.314669.
84.    Boswell SG, et al. Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy. 2012; 28(3): 429–439; doi: 10.1016/j.arthro.2011.10.018.
85.    Anitua E, et al. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004; 91(1): 4–15; doi: 10.1160/TH03-07-0440.
86.    Eming SA, et al. Interrelation of immunity and tissue repair or regeneration. Semin Cell Dev Biol. 2009; 20(5): 517–527; doi: 10.1016/j.semcdb.2009.04.009.
87.    Sundman EA, Cole BJ, Fortier LA. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med. 2011; 39(10): 2135–2140; doi: 10.1177/0363546511417792.
88.    Romano F, et al. The use of growth factors, CD34(+) cells and fibrin for the management of chronic venous ulcers: Platelet-rich gel in chronic venous ulcers. Int Wound J. 2016; 13(5): 1011–1013; doi: 10.1111/iwj.12500.
89.    Houdek MT, et al. Collagen and fractionated platelet-rich plasma scaffold for dermal regeneration. Plast Reconstr Surg. 2016; 137(5): 1498–1506; doi: 10.1097/PRS.0000000000002094.
90.    Monami M, et al. Effectiveness of most common adjuvant wound treatments (skin substitutes, negative pressure wound therapy, hyperbaric oxygen therapy, platelet-rich plasma/fibrin, and growth factors) for the management of hard-to-heal diabetic foot ulcers: a meta-analysis of randomized controlled trials for the development of the Italian Guidelines for the Treatment of Diabetic Foot Syndrome. Acta Diabetol. 2024; doi: 10.1007/s00592-024-02426-7.
91.    Vladulescu D, et al. Platelet-rich plasma (PRP) in dermatology: Cellular and molecular mechanisms of action. Biomedicines. 2023; 12(1): 7; doi: 10.3390/biomedicines12010007.
92.    Xu P, et al. Platelet-rich plasma accelerates skin wound healing by promoting re-epithelialization. Burns Trauma. 2020; 8: tkaa028; doi: 10.1093/burnst/tkaa028.
93.    Carter MJ, Fylling CP, Parnell LKS. Use of platelet rich plasma gel on wound healing: a systematic review and meta-analysis. Eplasty. 2011; 11: e38
94.    Syafira F, et al. Platelet-rich plasma (PRP) as therapy for diabetic foot ulcer (DFU): A systematic review and meta-analysis of the latest randomized controlled trials. Diabet Epidemiol Manag. 2024; 13(100178): 100178; doi: 10.1016/j.deman.2023.100178.
95.    Burnouf T, et al. antimicrobial activity of platelet (PLT)-poor plasma, PLT-rich plasma, PLT gel, and solvent/detergent-treated PLT lysate biomaterials against wound bacteria: Antimicrobial activity of plasma and PLT gel. Transfusion. 2013; 53(1): 138–146; doi: 10.1111/j.1537-2995.2012.03668. x.
96.    Mariani E, et al. Platelet-rich plasma affects bacterial growth in vitro. Cytotherapy. 2014; 16(9): 1294–1304; doi: 10.1016/j.jcyt.2014.06.003.
97.    Mercier R-C, et al. Beneficial influence of platelets on antibiotic efficacy in an in vitro model of Staphylococcus aureus-induced endocarditis. Antimicrob Agents Chemother. 2004; 48(7): 2551–2557; doi: 10.1128/AAC.48.7.2551-2557.2004
98.    OuYang H, et al. Platelet-rich plasma for the treatment of diabetic foot ulcer: a systematic review. Front Endocrinol (Lausanne). 2023; 14: 1256081. https://doi.org/10.3389/fendo.2023.1256081.
99.    Syafira F, et al. Platelet-rich plasma (PRP) as therapy for diabetic foot ulcer (DFU): A systematic review and meta-analysis of the latest randomized controlled trials. Diabet Epidemiol Manag. 2024; 13: 100178. https://doi.org/10.1016/j.deman.2023.100178
100.    Ahmed M, et al. Platelet-rich plasma for the treatment of clean diabetic foot ulcers. Ann Vasc Surg. 2017; 38: 206–211; doi: 10.1016/j.avsg.2016.04.023.
101.    Del Pino-Sedeño T, et al. Platelet-rich plasma for the treatment of diabetic foot ulcers: A meta-analysis: Platelet-rich plasma for diabetic foot ulcers. Wound Repair Regen. 2019; 27: 170–82. https://doi.org/10.1111/wrr.12690.
102.    Smith J, Rai V. Platelet-rich plasma in diabetic foot ulcer healing: Contemplating the facts. Int J Mol Sci. 2024; 25. https://doi.org/10.3390/ijms252312864.
103.    Singh SP, et al. Role of platelet-rich plasma in healing diabetic foot ulcers: a prospective study. J Wound Care. 2018; 27: 550–6. https://doi.org/10.12968/jowc.2018.27.9.550.
104.    Mammoto T, et al. Platelet rich plasma extract promotes angiogenesis through the angiopoietin1-Tie2 pathway. Microvasc Res. 2013; 89: 15–24. https://doi.org/10.1016/j.mvr.2013.04.008.
105.    Syafira F, et al. Platelet-rich plasma (PRP) as therapy for diabetic foot ulcer (DFU): A systematic review and meta-analysis of the latest randomized controlled trials. Diabet Epidemiol Manag. 2024; 13: 100178. https://doi.org/10.1016/j.deman.2023.100178.
106.    Peng Y, et al. Efficacy of platelet-rich plasma in the treatment of diabetic foot ulcers: A systematic review and meta-analysis. Ann Vasc Surg. 2024; 98: 365–73. https://doi.org/10.1016/j.avsg.2023.05.045.
107.    Zia S, Salam A, et al. Platelet Rich Plasma effects on diabetic foot ulcers - A review. Nat J Health Sci. 2023; 8: 28–36. https://doi.org/10.21089/njhs.81.0028
108.    Su Y-N, et al. Efficacy and safety of autologous platelet-rich plasma for diabetic foot ulcers: a systematic review and meta-analysis. J Wound Care. 2023; 32: 773–86. https://doi.org/10.12968/jowc.2023.32.12.773.
109.    Martinez-Zapata MJ, et al. Autologous platelet-rich plasma for treating chronic wounds. Cochrane Database Syst Rev. 2016; 2016: CD006899. https://doi.org/10.1002/14651858.CD006899.pub3.
110.    Cervelli V, et al. Application of platelet-rich plasma in plastic surgery: clinical and in vitro evaluation. Tissue Eng Part C Methods. 2009; 15: 625–34. https://doi.org/10.1089/ten.TEC.2008.0518.
111.    OuYang H, et al. Platelet-rich plasma for the treatment of diabetic foot ulcer: a systematic review. Front Endocrinol (Lausanne). 2023; 14: 1256081. https://doi.org/10.3389/fendo.2023.1256081
112.    O’Meara S, Martyn-St James M. Foam dressings for venous leg ulcers. Cochrane Database Syst Rev. 2013; 2013(5): CD009907; doi: 10.1002/14651858.CD009907.pub2.
113.    Singh SP, et al. Role of platelet-rich plasma in healing diabetic foot ulcers: a prospective study. J Wound Care. 2018; 27: 550–6. https://doi.org/10.12968/jowc.2018.27.9.550.
114.    O’Meara S, Al-Kurdi D, Ovington LG. Antibiotics and antiseptics for venous leg ulcers. Cochrane Database Syst Rev. 2008: CD003557. https://doi.org/10.1002/14651858.CD003557.pub2
115.    Bielecki TM, et al. Antibacterial effect of autologous platelet gel enriched with growth factors and other active substances: an in vitro study: an in-vitro study. J Bone Joint Surg Br. 2007; 89(3): 417–420; doi: 10.1302/0301-620X.89B3.18491.
116.    Prakasam N, et al. A clinical study of platelet rich plasma versus conventional dressing in management of diabetic foot ulcers. Int Surg J. 2018; 5: 3210. https://doi.org/10.18203/2349-2902.isj20184069.
117.    Gong F, et al. Effect of platelet-rich plasma vs standard management for the treatment of diabetic foot ulcer wounds: A meta-analysis. Int Wound J. 2023; 20: 155–63. https://doi.org/10.1111/iwj.13858.
118.    Hisham A. Abbas. Antibacterial, Anti-swarming and Antibiofilm Activities of Local Egyptian Clover Honey Against Proteus Mirabilis Isolated from Diabetic Foot Infection. Asian J. Pharm. Res. 2013; 3(3): 114-117.
119.    Hisham A. Abbas, Mona A. El-Sayed, Laila M. Al-Kadi, Amany I. Gad. Diabetic foot infections in Zagazig University Hospital: bacterial etiology, antimicrobial resistance and biofilm formation. Research J. Pharm. and Tech. 2014; 7(7): 783-788.
120.    Ambroxol blocks swarming and swimming motilities and inhibits biofilm formation by Proteus mirabilis isolated from diabetic foot infection. Asian J. Pharm. Tech. 2013; 3(3): 109-116.
121.    Hisham A. Abbas, Islam M. Abdo, Mahmoud Z. Moustafa. In vitro Antibacterial and Antibiofilm Activities of Hibiscus sabdariffa L. Extract and Apple Vinegar against Bacteria Isolated from Diabetic Foot Infections. Research J. Pharm. and Tech. 2014; 7(2): 131-136.
122.    Serra R, et al. Skin grafting for the treatment of chronic leg ulcers - a systematic review in evidence-based medicine: Skin grafting and CLUs. Int Wound J. 2017; 14: 149–57. https://doi.org/10.1111/iwj.12575.
123.    He M, et al. Comparison of allogeneic platelet-rich plasma with autologous platelet-rich plasma for the treatment of diabetic lower extremity ulcers. Cell Transplant. 2020; 29:963689720931428. https://doi.org/10.1177/0963689720931428.
124.    Deng J, et al. Efficacy and safety of autologous platelet-rich plasma for diabetic foot ulcer healing: a systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res. 2023; 18:370. https://doi.org/10.1186/s13018-023-03854-x
125.    Steed DL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast Reconstr Surg. 2006;117(7 Suppl):143S-149S; discussion. 150S-151S; doi: 10.1097/01.prs.0000222526.21512.4c.
126.    Sridharan K, Sivaramakrishnan G. Growth factors for diabetic foot ulcers: mixed treatment comparison analysis of randomized clinical trials. Br J Clin Pharmacol 2018; 84:434–44. https://doi.org/10.1111/bcp.13470.
127.    Gehlawat T, et al. A comparative study on therapeutic efficacy of autologous platelet-rich plasma, autologous platelet-rich fibrin matrix, recombinant human epidermal growth factor, and collagen particles in nonhealing leg ulcers. J Cutan Aesthet Surg. 2023; 16:121–7. https://doi.org/10.4103/jcas.jcas_116_22.
128.    Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg 1997; 38:563–76; discussion 577.
129.    OuYang H, et al. Effects of different treatment measures on the efficacy of diabetic foot ulcers: a network meta-analysis. Front Endocrinol (Lausanne). 2024; 15: 1452192. https://doi.org/10.3389/fendo.2024.1452192
130.    Menchisheva Y, Mirzakulova U, Yui R. Use of platelet-rich plasma to facilitate wound healing. Int Wound J. 2019; 16: 343–53. https://doi.org/10.1111/iwj.13034.
131.    Goldman RJ. Hyperbaric oxygen therapy for wound healing and limb salvage: a systematic review. PM R. 2009; 1: 471–89. https://doi.org/10.1016/j.pmrj.2009.03.012.
132.    Brouwer RJ, et al. A systematic review and meta-analysis of hyperbaric oxygen therapy for diabetic foot ulcers with arterial insufficiency. J Vasc Surg. 2020; 71: 682-692.e1. https://doi.org/10.1016/j.jvs.2019.07.082.
133.    Milano G, et al. Platelet-rich plasma in orthopaedic sports medicine: state of the art. J ISAKOS. 2019; 4: 188–95. https://doi.org/10.1136/jisakos-2019-000274.
134.    Cao W, et al. Exosomes derived from platelet-rich plasma promote diabetic wound healing via the JAK2/STAT3 pathway. iScience. 2023; 26: 108236. https://doi.org/10.1016/j.isci.2023.108236.
135.    Lacci KM, Dardik A. Platelet-rich plasma: support for its use in wound healing. Yale J Biol Med. 2010; 83:1–9

Recomonded Articles:

Author(s): Sonali Syal, Vinay Pandit, M. S Ashawat

DOI: 10.5958/2231-5691.2020.00034.9         Access: Open Access Read More

Author(s): AK Meena, MM Rao, RP Meena, P Panda, Renu

DOI:         Access: Open Access Read More

Author(s): Binoy Varghese Cheriyan, Sabartina scarlet, Priyadarshini, Shailesh joshi, Santhseelan, Sheik Mohamed

DOI: 10.5958/2231-5691.2019.00032.7         Access: Open Access Read More

Author(s): Rutuja R. Shah, Rohan R. Vakhariya

DOI: 10.5958/2231-5691.2020.00003.9         Access: Open Access Read More

Author(s): Vani Mamillapalli, Latha Sri Kondaveeti, Ratna Harika Chapala, Tejaswi Komal Sai. Sareddu, Santhi Pattipati, Padmalatha Khantamneni

DOI: 10.52711/2231-5691.2022.00014         Access: Open Access Read More

Author(s): Ghanshyam Dhalendra, Trilochan Satapathy, Amit Roy

DOI:         Access: Open Access Read More

Author(s): Prathap Kumar Kothapalli, Jagadeesh. S. Sanganal, N.B. Shridhar

DOI:         Access: Open Access Read More

Author(s): S.K. Purohit, R. Solanki, V. Mathur, M. Mathur

DOI:         Access: Open Access Read More

Author(s): Naidu Narapusetty, O. Sivaiah, B. Balanasaraiah, M. Haranadhbabu, B. Prasad, B. Hosanna Crown, Ch. M. M. Prasada Rao

DOI: 10.5958/2231-5691.2017.00015.6         Access: Open Access Read More

Author(s): Kavya V. Reddy, Ashish V. Yachawad, Krushna K. Zambare, Sopan Landge

DOI: 10.5958/2231-5691.2020.00016.7         Access: Open Access Read More

Author(s): Venkateshwarlu Goli, Kanakam Vijay Bhaskar, Sravan Prasad Macharla, Jimmidi.Bhaskar, P. Suvarna Devi, T. Ramchander

DOI:         Access: Open Access Read More

Author(s): Muhammad Hamza Ashfaq, Amna Siddique, Sammia Shahid

DOI: 10.52711/2231-5691.2021.00021         Access: Open Access Read More

Author(s): Debarshi Kar Mahapatra, Ruchi S. Shivhare, Pranesh Kumar

DOI: 10.5958/2231-5691.2018.00002.3         Access: Open Access Read More

Author(s): P. Lalitha, V. Sachithanandam, N. S. Swarnakumar, R. Sridhar

DOI: 10.5958/2231-5691.2019.00045.5         Access: Open Access Read More

Author(s): Govind Navale, Dipak D. Patil, Aashutosh A. Patil, Ketan B. Patil, Narendra B. Patil

DOI: 10.5958/2231-5691.2019.00026.1         Access: Open Access Read More

Author(s): Muhammed Shakkeel K.V, Anjan Kumar, Veeresh Babu. D, Narayana Swamy V.B

DOI: 10.5958/2231-5691.2015.00021.0         Access: Open Access Read More

Author(s): Farha Fatma, Anil Kumar

DOI: 10.52711/2231-5691.2021.00045         Access: Open Access Read More

Author(s): Ganesh Akula, Rangu Nirmala, CH. Shanthipriya, S. Rohini Reddy, A. Jaswanth

DOI: 10.5958/2231-5691.2017.00010.7         Access: Open Access Read More


Recent Articles




Tags